• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 45
  • 7
  • Tagged with
  • 151
  • 151
  • 65
  • 56
  • 33
  • 32
  • 29
  • 27
  • 25
  • 23
  • 22
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Numerical modeling of pulse thermography experiments for defect characterisation purposes

Susa, Mirela 16 April 2018 (has links)
La méthode des éléments finis est un outil mathématique puissant qui permet la résolution des équations différentielles décrivant un processus physique donné. Elle est particulièrement adaptée à la résolution de problèmes non linéaires ayant des géométries complexes. Une de ces applications est la modélisation du transfert de chaleur dans un objet soumis à une inspection par la technique de thermographie infrarouge pulsée (PT). Les résultats de ce travail ont prouvé que les solutions obtenues numériquement correspondent aux résultats expérimentaux, ceci malgré les contraintes liées à la puissance de l'ordinateur utilisé (capacité mémoire, disque, etc.) afin de résoudre le problème d'une manière adéquate. Par conséquent, le modèle numérique peut être considéré comme un outil complémentaire à la caractérisation des défauts par la PT. Dans le cas d'une procédure d'inspection où les différenst types de défauts présents dans le spécimen sont connus a priori, la modélisation numérique peut être utilisée efficacement afin d'améliorer la caractérisation de ces défauts, grâce à la combinaison modélisation MEF / expérience. En se basant sur l'analyse qualitative de l'évolution temporelle des profils de température obtenus en pratique, on a démotnré qu'il est possible de déterminer le type de défaut par une simple comparaison de la forme expérimentale de l'évolution du contraste qui est dépendante du type de défaut, avec les résultats obtenus grâce au modèle numérique. Une fois que le défaut est connu, en cas de structures complexes de type "sandwich", sa profondeur peut être réduite automatiquement puisque la plupart de ces défauts typiques apparaît sur les interfaces des couches de l'échantillon. Afin de procéder à la détermination de la taille du défaut, tâche qui est souvent très difficile en cas de structures multicouches à cause du contraste flou observé sur le défaut, provoqué par les effets latéraux de diffusion de chaleur, les expressions de régression obtenues à partir des résultats de modélisation peuvent être utilisées. Dans ce contexte, comme il a été démontré, la valeur du contraste thermique maximal obtenue expérimentalement n'est pas un paramètre fiable qui peut être utilisée avec confiance comme indicateur quantitatif des caractéristiques du défaut (dans ce cas-ci, sa taille latérale). Ceci est principalement dû au niveau élevé de l'incertitude sur le contraste maximal de température [delta]Tmax déterminé à partir de l'expérience, ainsi qu'à la force dépendance de [delta]Tmax à l'égard de la puissance de la source de chlauer appliquée. Ce problème devient signficatif dans le contexte de chauffage non-uniforme inévitablement présent dans les expériences de thermographie pulsée. En ce qui concerne l'incertitude des mesures, dans les cas où le signal thermique du défaut est faible, l'incertitude peut devenir égale ou même plus grande que la [delta]Tmax obtenu. Cependant, dans la plupart des cas, elle représente un pourcentage significatif du [delta]Tmax déterminé expérimentalement. D'autre part, les effets de l'excitation non-uniforme se sont avérés partiellement éliminés quand la procédure proposée pour la sélection de la région saine adéquate est utilisée. La procédure est basée sur l'utilisation de l'Image de Distribution de Source (IDS) reconstruite à partir de plusieurs thermogrammes initiaux acquis juste après que l'excitation soit appliquée à l'échantillon (alors que les effets possibles des défauts ne sont pas encore visibles sur la surface du spécimen). Une fois appliquée, la méthodologie s'assure que les régions défectueuses et saines aient reçu une quantité égale d'énergie (chaleur) durant l'excitation (jusqu'à une différence tolérable donnée). Cependant, aucune des corrections et mesures de précaution ne peuvent éliminer la nature fortement incertaine des valeurs expérimentales de [delta]Tmax. D'un autre côté, la période T max d'apparition de [delta]Tmax semble être beaucoup moins affectée par dse incertitudes de mesure et est relativement sensible aux caractéristiques du défaut (telles que sa taille et sa profondeur). On a démontré que même s'il existe des différences dans les valeurs absolues, les périodes de contraste maximal de température obtenues expérimentalement et numériquement peuvent être reliées par une simple relation algébrique, qui est réduite à une différence à une constante donnée. Une fois que ce rapport est établi, la régression obtenue par la modélisation peut être utilisée efficacement afin de fournir les informations désirées sur les caractéristiques inconnues du défaut. D'ailleurs, dans plusieurs cas où seulement un nombre limité de défauts est disponible dans l'échantillon calibré, pour que le procédé d'inversion soit établi, ou quand les données de mesure sont trop bruitées pour permettre la formulation d'une méthodologie d'inversion fiable, la modélisation numérique permet la déterminaison plus simple et plus directe des relations de régression pour de futures caractérisations de défauts. Par conséquent, le nombre illimité de simulations peu coûteuses pouvant être effectuées permet la création d'ensemble global et complet de relations entre les caractéristiques de défauts et les variables significatives de la PT, telle que la période d'apparition du contraste maximal de température.
42

Comparaison expérimentale de la thermographie modulée et de la thermographie pulsée pour l'évaluation non destructive des matériaux employés en aérospatial

Ben Larbi, Wael 16 April 2018 (has links)
Ce mémoire a pour but de comparer deux méthodes de contrôle non destructif : la thermographie modulée et la thermographie puisée, l'étude a été faite sur différents échantillons utilisés dans la construction aéronautique et est présentée sous forme de comparaison quantitative et qualitative, avec une explication des avantages et des inconvénients de chaque méthode.
43

Optimization of line scanning thermography of composite materials for aerospace industry using advanced modeling and analysis algorithms

Khodayar, Fariba 27 September 2018 (has links)
Ces dernières années, l'émergence de matériaux avancés et de méthodes de fabrication a conduit à la production de composants mécaniques qui fournissent de meilleures spécifications mécaniques avec un poids inférieur. Ces produits spéciaux sont utilisés dans les industries de haute technologie comme l'aérospatiale et l'armée. Par conséquent, la qualité du produit est essentielle pour obtenir un produit sécurisé. Les controles non destructifs (CND) sont l'une des méthodes les plus utilisées pour détecter les défauts internes de différents matériaux. Cette technique n'a pas d'effet négatif sur les spécimens. Les différentes techniques de tests non destructifs sont utilisées dans différents domaines pour assurer l'exactitude, vérifier l'intégrité, réduire les coûts de production et détecter les défauts. Diverses méthodes CND ont été introduites et développées pour détecter les défauts et les délaminages qui ont été utilisés en fonction de la taille et du type de défaut, du matériau et de la localisation des défauts. La thermographie par balayage linéaire (LST) est une technique de thermographie dynamique qui permet d'inspecter de grands composants de surfaces métalliques et de composites couramment utilisés dans l'industrie aérospatiale. En tant que technique de test et de controle non destructive (CND), la LST est une technique dynamique adaptée à l'inspection de composants aérospatiaux importants et complexes. La méthode LST robotisée présente des avantages par rapport aux approches statiques. La LST robotisé fournit une uniformité de chauffage et permet un traitement d'image qui améliore la probabilité de détection, permettant à un composant à grande échelle d'être inspecté sans perte de résolution. En utilisant l'approche LST, il est possible d'inspecter de grandes surfaces à des vitesses de balayage élevées. De plus, les résultats d'inspection sont immédiatement disponibles pour analyse pendant que le processus de numérisation se poursuit. / In the last decade, emerging of advanced materials and manufacturing methods leads to produce the mechanical components, which provide better mechanical specifications with lower weight. These special products are used in the high technology industries such as aerospace and military. Hence, the product quality is vital to achieve a secure product. Non-destructive Testing (NDT) is one of the popular methods, which is employed to detect the internal defects of different materials. This technique does not have any negative effect on the specimens. The various techniques of nondestructive testing are used in different fields to ensure accuracy, verify integrity, reduce production costs and detect defects. Various NDT methods were introduced and developed to detect the flaws and delamination which have been used according to defect size and type, material, and defect location. Line scan thermography (LST) is a dynamic thermography technique, which is used to inspect large components of metallic surfaces and composites, commonly used in the aerospace industry. As a nondestructive testing and evaluation (NDT&E) technique, LST is a dynamic technique suited to inspect large and complex aerospace components. The robotized LST method provides advantages in comparison to the static approaches. Robotized LST provides heating uniformity and allows image processing which enhances the detection probability, allowing a large-scale component to be inspected without the loss of resolution. Using the LST approach, it is possible to inspect large areas at high scan speeds. Also, the inspection results are immediately available for analysis while the scanning process continues. One of the important challenges in LST method is the number of parameters such as scanning speed, power, the distance between source and specimen, which affect the LST performance. The optimal values are dependent on the material structure, thermal specifications of the composite material, defect shape and infrared camera resolution. In order to determine the optimal parameters, the LST is simulated using a 3D finite element method (FEM). The main objective of this thesis is to maximize the detection depth and the signal-to-noise (SNR) value at maximum signal contrast as the criteria to evaluate the inspection quality and performance. A composition of the analytical model of LST thermography, 3D finite element approach and experimental data is employed to find the optimal LST parameters. The signal processing techniques that were initially developed to be applied on pulse thermography have been successfully implemented to enhance the detection probability.
44

Nondestructive testing of metals and composite materials using ultrasound thermography : comparison with pulse-echo ultrasonics

Peycheva, Kira 19 April 2018 (has links)
La thermographie stimulée par ultrasons (TU) est une méthode de contrôle non destructif qui a été inventée en 1979 mais qui a s'est répandue à la fin des années 90. L'idée de cette méthode est d'exciter le matériau à inspecter avec des ondes mécaniques à des fréquences allant de 20kHz à 40kHz et d'observer ensuite leur température de surface avec une caméra infrarouge. TU est une méthode de thermographie active; les autres méthodes les plus connues sont la thermographie optique et celle stimulée par courants de Foucault. Son habilité à révéler des défauts dans des cas où les autres techniques échouent, fait d'elle une méthode pertinente ou complémentaire. L'inconvénient de la TU est que beaucoup de conditions expérimentales doivent être respectées pour obtenir des résultats adéquats incluant quelques paramètres qui doivent être bien choisis. Le but de ce projet est d'explorer les capacités, les avantages et les limites de la TU. Pour comparer la performance de la TU à celle des ultrasons conventionnels, des tests ultrasons de type C-Scan ont été réalisés pour quelques échantillons. Quatre matériaux différents avec quatre types de défauts ont été investigués afin de mieux définir les conditions optimales pour améliorer la détection des défauts. Les résultats bruts obtenus étaient traités dans chaque cas afin de mieux visualiser les contrastes thermiques causés par les discontinuités cachées.
45

Non-destructive evaluation of baked carbon anodes for process & quality control using modal & acousto-ultrasonic testing

De Araujo Costa Rodrigues, Daniel 06 July 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / Le marché mondial de l'aluminium demande une réduction des coûts et des impacts environnementaux. Simultanément, la qualité des matières premières requises pour le procédé de production de l'aluminium primaire est de plus en plus variable et leur qualité se dégrade dans le temps. Considérant ces demandes et défis, l'approche traditionnelle de contrôle de qualité des anodes de carbone précuites, qui sont des intrants dans les cellules modernes de production d'aluminium, n'est plus suffisante pour le contrôle et l'optimisation de la production des anodes. Toutefois, de nouvelles techniques d'analyse rapides et non-destructives ont été développées afin d'améliorer le contrôle de leur qualité. Dans cette recherche, un prototype a été conçu pour avancer la recherche de deux des techniques les plus récentes, soit l'analyse acousto-ultrasonique (AU) et l'analyse modale (MA). L'équipement est décrit et une analyse de répétabilité est faite pour démontrer que les techniques peuvent être utilisés pour le contrôle du procédé et de la qualité des anodes. Ensuite, les deux techniques sont testées avec un grand nombre d'échantillons. En plus, une procédure pour estimer les propriétés des anodes basées sur les résultats de l'AU est proposée. Finalement, les trois approches sont combinées pour montrer comment elles se complètent. Pour l'analyse modale, une nouvelle approche pour utiliser les données de la réponse vibratoire des anodes est proposée avec le potentiel d'exploiter la totalité des données disponibles. De plus, elle permet de réduire le nombre de capteurs (accéléromètres) et simplifie significativement la procédure expérimentale en comparaison avec les travaux de recherche antérieurs. La capacité supérieure de détection de défauts de la nouvelle approche a été démontrée sur un grand nombre d'échantillons, en plus de sa répétitivité pour la détection de défauts externes. De façon similaire, une nouvelle approche pour utiliser les données est proposée pour l'analyse acousto-ultrasonique, en améliorant la décomposition des signaux dans différentes bandes de fréquence et en la combinant avec un modèle de classification comme un moyen d'utiliser le système pour discriminer deux classes d'anodes. Ces classes étaient des anodes avec des dommages visibles sur les surfaces externes des anodes et d'autres sans dommage apparent. Il était attendu de l'approche une meilleure résolution temporelle et, par conséquence, une meilleure performance en discrimination, ce qui a été validé à la fin de l'étude. Une technique d'interpolation a été proposée pour les données de l'analyse AU afin d'obtenir une distribution spatiale plus fines des vitesses du son dans les anodes. Un jeu d'échantillons simulés numériquement a été généré pour représenter des anodes et des défauts internes. Ces échantillons ont été utilisés pour confirmer la performance de l'approche proposé à la détection et au positionnement des défauts simulés. Cette approche nous a permis de tester la performance de la technique de manière théorique dans plusieurs situations : différents nombres de capteurs et leur positionnement, différents nombres de défauts et leur taille. La performance a été confirmée avec un groupe d'échantillons d'anodes carottées qui ont été caractérisées en laboratoire et la corrélation entre la vitesse du son estimée et plusieurs propriétés clés des anodes. Finalement, une combinaison entre l'analyse modale et l'AU en utilisant l'analyse modale comme première étape dans une stratégie de contrôle à deux niveaux comme étape de pré-traitement, réduit significativement la quantité d'anodes qui ont besoin d'être analysés par l'AU. Il est aussi démontré que leur combinaison est plus précise en performance de classification que l'utilisation de ces deux méthodes séparément. Ensuite, l'interpolation a été utilisé pour investiguer ce qui caractérise des anodes qui ont été bien, ou mal classifiées. / The global aluminium market demands cost efficiency and environmental impact reductions ever more. Simultaneously raw materials for the production process have become more inconsistent and overall worse in quality. With those increasing demands and challenges, the quality control of baked carbon anodes, a requirement for modern aluminium production cells, using the traditional approach does not allow for tight control and optimization of the anode production process. However, new rapid and non-destructive techniques (NDTs) have been developed which could fulfill the need for better quality control methods. In this research, a prototype equipment was developed to further advance the research in two of the newer techniques, namely acousto-ultrasound (AU) and modal analysis. The equipment is described, and a repeatability evaluation is performed on a set of industrial anodes to prove it can be used for process and quality control. In sequence, both modal analysis and acousto-ultrasonics are tested on a large number of samples. Moreover, a procedure to interpolate the anode's properties based on the AU results is proposed. Finally, the three approaches are combined to show how they complement each other. For modal analysis, a new approach for analyzing the data collected is proposed which has the potential of fully exploiting the available data while simultaneously reducing the number of sensors and significantly simplifying the testing procedure, in comparison with previous research. The approach was shown to be more capable for the same analyzed samples, while also being more repeatable, in the task of detecting the presence of external defects. Similarly, a new method for analyzing data collected is proposed for acousto-ultrasonics regarding the frequency band decomposition combined with a classification model as a means to use the system to discriminate between two classes of anodes. The classes were anodes with visible external damages and anodes without any damages. The approach was expected to deliver better time resolution, and consequently, better performance in the discrimination task, which was confirmed at the end of the study. An interpolation technique was proposed for the AU data and a set of toy examples was generated to simulate anodes and internal defects. Those were used to confirm the performance of the proposed approach in detecting and positioning the simulated defects. This allowed the technique to be tested for its performance, theoretically, in cases with different numbers of sensors, numbers of defects and defect sizes. Its performance was confirmed using a group of core samples from anodes that were analyzed and correlations with the sound speed and key anode properties were established.
46

Aerial inspection of complex structures using multi-modal procedures and data processing a comprehensive solution for drone-based multi-modal inspection of industrial components

Nooralishahi, Parham 28 July 2023 (has links)
Thèse ou mémoire avec insertion d'articles / Les systèmes aériens autonomes (UAV/UAS), communément appelés drones, sont un sujet de plus en plus important dans les inspections par essais non-destructifs (END). Avec les avancées technologiques significatives des caméras thermiques, les méthodes d'inspection visuelle acquièrent continuellement de l'attention dans les inspections END. Les inspections dans les zones difficiles d'accès sont coûteuses, parfois impossibles en raison de la nature de la zone ou des dangers possibles pour les ressources humaines. L'inspection de spécimens complexes et de grande taille, notamment les des structures courbes, nécessite des relevés approfondis sous différents aspects, ce qui est presque impossible ou très coûteux avec des véhicules terrestres ou des ressources humaines. Ainsi, en raison de leur grande manœuvrabilité, les industries investissent davantage dans les drones pour surmonter les problèmes mentionnés et aider les inspecteurs à examiner les composants de manière approfondie. De plus, grâce à des développements récents, les UAVs peuvent également accéder à des zones éloignées ou difficiles d'accès et transporter de nombreuses charges utiles. Malgré les énormes avantages de l'utilisation des drones pour l'inspection, certains défis doivent être relevés. Ces dernières années, de nombreuses études se sont concentrées sur l'utilisation d'images thermiques/visibles pour inspecter différentes structures. Cependant, l'utilisation de données d'inspection multimodales par drone, y compris les données d'imagerie visible, thermique et de profondeur, pour fournir une compréhension approfondie de l'échantillon et de son environnement afin de produire une analyse plus précise, doit être étudiée en détail. Tout d'abord, cette étude aborde les défis communs des inspections par drone. La détection de l'effet de la réflexion thermique dans une inspection thermographique est le premier défi abordé dans cette étude. Ensuite, l'effet des mouvements constants et soudains d'un drone sur l'analyse des séquences d'images thermiques est étudié de manière approfondie. En outre, les résultats sont évalués à l'aide d'un scénario d'utilisation où le drone surveille un endroit fixe tout en restant en vol stationnaire. Par la suite, cette étude vise à développer une plateforme multi-sensorielle comprenant une structure de montage, des capteurs d'imagerie et un ordinateur embarqué. La solution logicielle intégrée à cette plate-forme fournit les fonctions requises d'acquisition, de transmission, de stockage et de traitement des données. De plus, cette étude se concentre sur le traitement de modalités multiples ou individuelles. Notamment, une méthode de segmentation par auto-apprentissage est proposée dans le contexte de la détection de défauts dans les images thermiques. Aussi, un algorithme de détection de fissures par drone est présenté pour analyser l'inspection visuelle des chaussées et des structures en béton. Ensuite, cette étude s'est concentrée sur le traitement des données multi-modales acquises par la plateforme multi-sensorielle présentée. En effet, l'utilisation d'images thermiques et visibles couplées pour améliorer la détection des anomalies est étudiée de manière approfondie. Plusieurs scénarios d'utilisation sont introduits présentant différentes approches pour améliorer l'efficacité de la détection. Ces derniers fournissent un aperçu de l'applicabilité des sous-études introduites. Pour chacun d'entre eux, de multiples expériences sont menées pour démontrer les applications des méthodes proposées dans des scénarios de cas réels. / Unmanned Aerial Vehicles/Systems (UAVs/UAS), commonly known as drones, is a rising topic in Non-Destructive Testing (NDT) inspections. With significant technological advancements in thermal cameras, visual inspection methods continuously gain much attention in non-destructive inspections. Inspections in remote or hard-to-access areas are costly and sometimes impossible due to the area's nature or the possible dangers facing human resources. Inspection of complex and large specimens, especially with curvaceous structures, requires extensive surveys from different aspects, which is nearly impossible or very costly using ground vehicles or human resources. Thus, industries are investing more in drones to overcome mentioned problems as they have high flexibility of maneuver, which can assist inspectors in examining the components thoroughly. They can also access remote or hard-to-access areas and carry many payloads thanks to recent developments. Despite the enormous benefits of using drones for inspection, some challenges need to be addressed. In recent years, many studies focused on using thermal/visible images to inspect different structures. However, using multi-modal data, including visible, thermal, and depth imagery data, provides an extensive understanding of the specimen and surrounding environment in case of drone-enabled inspections and produces a more accurate analysis that needs to be thoroughly studied. Firstly, this study addresses the common challenges in drone-based inspections in the scope of this research. Detecting the effect of thermal reflection in a thermographic inspection is the first challenge addressed in this study. Later, the effect of a drone's constant and sudden motions on analyzing thermal image sequences is investigated comprehensively. Also, the results are evaluated using a use-case scenario where the drone monitors a fixed location while hovering. Also, the next part of this study aims to develop a multi-sensory platform, including a mounting structure, imagery sensors, and an onboard computer. The software solution embedded in this platform provides the required data acquisition, transmission, storage, and processing features. Later, this study focuses on the processing of multiple or individual modalities. Firstly, a self-training segmentation method is proposed in the context of defect detection in thermal images. Also, a drone-enabled crack detection algorithm is presented for analyzing the visual inspection of pavement and concrete structures. Next, this study focused on processing multi-modal data acquired by the presented multi-sensory platform. Firstly, using coupled thermal and visible images to enhance abnormality detection is investigated thoroughly. Several use-case scenarios are introduced, presenting different approaches to enhance the detection's efficiency. In order to provide insight into the applicability of the introduced sub-studies. For each of them, multiple experiments are conducted demonstrating the applications of the proposed methods in real-case scenarios.
47

Potentiel de la robotique pour l'inspection thermographique par chauffage inductif

Mokhtari, Mohammed-Yacine 21 December 2018 (has links)
La thermographie par courants de Foucault (ECT) est une méthode de thermographie active. L’excitation inductive génère des courants de Foucault dans les spécimens conducteurs. En présence de défauts, la circulation des courants est affectée par ces discontinuités produisant un changement dans la distribution de la température autour des défauts. Ces changements sont observés avec une caméra infrarouge. Dans ce travail, on présente une application robotique de la thermographie par courants de Foucault. Une interface robotique a été développée et tous les capteurs utilisés ont été intégrés à la plateforme. Des simulations ont été achevées avec COMSOL Multiphysics en variant différents paramètres. Des expériences ont été menées sur plusieurs spécimens (de différents matériaux) avec des défauts de différents types et tailles. La linescan thermographie est principalement étudiée et d’autres modes d’inspections ont été explorés. Les images résultantes sont reconstruites avec un algorithme dédié. Finalement, les résultats de la méthode sont comparés à ceux de la thermographie optique (par halogène) pour montrer les capacités de la méthode. / Eddy current thermography (ECT) is an active thermography method. The inductive excitation generates Eddy currents in electrically-conductive specimen. In a presence of defects, the eddy current flow is affected by these discontinuities leading to changes in the temperature distribution in the specimen around the defects. These changes are observed by an infrared camera. In this work, we present a robotic application of the method. A robotic interface is developed and all the sensors needed are integrated to the platform. Simulations are performed using COMSOL Multiphysics by varying different parameters. Experiments are realised on different specimens (made of different materials) with defects of different sizes. The linescan Eddy current thermography is studied and other modes are explored. The resulting images are reconstructed with a dedicated algorithm. Finally, the method’s results are compared to optical thermography to show the capability of the method.
48

Classement pour la résistance mécanique du chêne par méthodes vibratoires et par mesure des orientations des fibres / Mechanical grading of oak wood using vibrational and grain angle measurements

Faydi, Younes 11 December 2017 (has links)
En France, les feuillus constituent la part majoritaire du parc forestier, dont, notamment, le chêne de qualité secondaire. Ce dernier pourrait devenir une alternative à d’autres matériaux de construction. Cependant, en fonction des singularités relatives à chaque sciage, les performances mécaniques peuvent varier considérablement. Il est donc nécessaire de trier les sciages adaptés pour une application en structure. L’efficience des méthodes de classement du chêne apparaît comme une des problématiques majeures. Ce projet de recherche a pour but de développer des méthodes et moyens de mesure capables de classer convenablement le chêne de qualité secondaire et palier au classement visuel par un opérateur. Ce dernier sous-estime fortement les qualités du chêne mais reste fréquemment employé par les industriels faute d’alternative. Au cours de cette thèse, deux modèles de prédiction des propriétés mécaniques ont été développés pour classer par machine le chêne de qualité secondaire. Ces modèles se basent sur une large campagne expérimentale de contrôle non destructif, avec validation par essais destructifs. Le premier modèle est analytique, exploitant les cartographies d’orientation des fibres des sciages pour déterminer localement les résistances et modules élastiques, et en déduire les propriétés globales. Le second modèle est statistique, basé sur l’analyse des signaux vibratoires sous sollicitation longitudinale ou transversale. Les résultats obtenus montrent que la méthode vibratoire longitudinale, employée couramment en industrie dans le cas des résineux, n’est pas adaptée pour classer convenablement le chêne de qualité secondaire. A l’inverse, la méthode vibratoire transversale sur chant permet d’obtenir des rendements de classement pertinents mais nécessite des efforts de développement pour être industrialisée. Le modèle basé sur la mesure de l’orientation des fibres offre les meilleurs rendements et des résultats stables sur l’ensemble des classes étudiées. / Hardwoods are the majority in France, with a substantial amount of small, low grade oaks. This resource could be an alternative of typical construction materials. However, mechanical properties can change a lot depending on timber defects. Thus, it is necessary to verify the good quality of each board in order it can be used in structural applications. The efficiency of grading methods is one of principal challenges to promote the use of oak in structures. The present work aims to provide new grading machine solutions relative to low grade oak which could replace the traditional and downgrading method based on visual sorting by an operator.Indeed, two models have been developed during this thesis, based on nondestructive measurements following by destructive tests to validate them. The first one is an analytical model based on grain angle scanning measurements. From grain angle data maps, local values of modulus of elasticity and resistance were computed, then the global mechanical properties were computed. The second one is a statistical model based on the analysis of longitudinal and transversal vibrational measurements. The results show that the longitudinal vibrational method based on the first longitudinal eigen frequency, which is mostly employed in softwood industry, is not suited for oak grading. However, the efficiency of the methods based on transversal vibrations is pretty good but it needs additional efforts for industrial application. In this work, the model based on grain angle scanning offer the best and the more robust grading efficiency for all grades.
49

Architecture matérielle pour la reconstruction temps réel d'images par focalisation en tout point (FTP) / Hardware architecture for real-time imaging towards Total Focusing Method (TFM )

Njiki, Mickaël 27 September 2013 (has links)
Le contrôle non destructif (CND) a pour but de détecter et de caractériser d’éventuels défauts présents dans des pièces mécaniques. Les techniques ultrasonores actuelles utilisent des capteurs multiéléments associés à des chaînes d’instrumentations et d’acquisitions de données multi capteurs en parallèles. Compte tenu de la masse de données à traiter, l’analyse de ces dernières est généralement effectuée hors ligne. Des travaux en cours, au Commissariat à l’Energie Atomique (CEA), consistent à développer et évaluer différentes méthodes d’imageries avancées, basées sur la focalisation synthétique. Les algorithmes de calculs induits nécessitent d’importantes opérations itératives sur un grand volume de données, issues d’acquisition multiéléments. Ceci implique des temps de calculs important, imposant un traitement en différé. Les contraintes industrielles de caractérisation de pièces mécaniques in situ imposent de réaliser la reconstruction d’images lors de la mesure et en temps réel. Ceci implique d’embarquer dans l’appareil de mesure, toute l’architecture de calcul sur les données acquises des capteurs. Le travail de thèse a donc consisté à étudier une famille d’algorithmes de focalisation synthétique pour une implantation temps réel sur un instrument de mesure permettant de réaliser l’acquisition de données. Nous avons également étudié une architecture dédiée à la reconstruction d’images par la méthode de Focalisation en Tout Point (FTP). Ce travail a été réalisé dans le cadre d’une collaboration avec l’équipe ACCIS de l’institut d’Electronique Fondamentale, Université de Paris Sud. Pour ce faire, notre démarche s’est inspirée de la thématique de recherche d’Adéquation Algorithme Architecture (A3). Notre méthodologie, est basée sur une approche expérimentale consistant dans un premier temps en une décomposition de l’algorithme étudié en un ensemble de blocs fonctionnels (calculs/transferts). Cela nous a permis de réaliser l’extraction des blocs pertinents de calculs à paralléliser et qui ont une incidence majeure sur les temps de traitement. Nous avons orienté notre stratégie de développement vers une conception flot de donnée. Ce type de modélisation permet de favoriser les flux de données et de réduire les flux de contrôles au sein de l’architecture matérielle. Cette dernière repose sur une plateforme multi-FPGA. La conception et l’évaluation de telles architectures ne peuvent se faire sans la mise en place d’outils logiciels d’aide à la validation tout au long du processus de la conception à l’implantation. Ces outils faisant partie intégrante de notre méthodologie. Les modèles architecturaux des briques de calculs ont été validés au niveau fonctionnel puis expérimental, grâce à la chaîne d’outils développée. Cela inclus un environnement de simulation nous permettant de valider sur tables les briques partielles de calculs ainsi que le contrôle associé. Enfin, cela a nécessité la conception d’outils de génération automatique de vecteurs de tests, à partir de données de synthèses (issues de l’outil simulation CIVA développé par le CEA) et de données expérimentales (à partir de l’appareil d’acquisition de la société M2M-NDT). Enfin, l’architecture développée au cours de ce travail de thèse permet la reconstruction d’images d’une résolution de 128x128 pixels, à plus de 10 images/sec. Ceci est suffisant pour le diagnostic de pièces mécaniques en temps réel. L’augmentation du nombre d’éléments capteurs ultrasonores (128 éléments) permet des configurations topologiques plus évoluées (sous forme d’une matrice 2D), ouvrant ainsi des perspectives vers la reconstruction 3D (d’un volume d’une pièce). Ce travail s’est soldé par une mise en œuvre validée sur l’instrument de mesure développé par la société M2M-NDT. / Non-destructive Evaluation (NDE) regroups a set of methods used to detect and characterize potential defects in mechanical parts. Current techniques uses ultrasonic phased array sensors associated with instrumentation channels and multi-sensor data acquisition in parallel. Given the amount of data to be processed, the analysis of the latter is usually done offline. Ongoing work at the French “Commissariat à l’Energie Atomique” (CEA), consist to develop and evaluate different methods of advanced imaging based on synthetic focusing. The Algorithms induced require extensive iterative operations on a large volume of data from phased array acquisition. This involves important time for calculations and implies offline processing. However, the industrial constraint requires performing image reconstruction in real time. This involves the implementation in the measuring device, the entire computing architecture on acquired sensor data. The thesis has been to study a synthetic focusing algorithm for a real-time implementation in a measuring instrument used to perform ultrasonic data acquisition. We especially studied an image reconstruction algorithm called Total Focusing Method (TFM). This work was conducted as part of collaboration with the French Institute of Fundamental Electronics Institute team of the University of Paris Sud. To do this, our approach is inspired by research theme called Algorithm Architecture Adequation (A3). Our methodology is based on an experimental approach in the first instance by a decomposition of the studied algorithm as a set of functional blocks. This allowed us to perform the extraction of the relevant blocks to parallelize computations that have a major impact on the processing time. We focused our development strategy to design a stream of data. This type of modeling can facilitate the flow of data and reduce the flow of control within the hardware architecture. This is based on a multi- FPGA platform. The design and evaluation of such architectures cannot be done without the introduction of software tools to aid in the validation throughout the process from design to implementation. These tools are an integral part of our methodology. Architectural models bricks calculations were validated functional and experimental level, thanks to the tool chain developed. This includes a simulation environment allows us to validate partial calculation blocks and the control associated. Finally, it required the design of tools for automatic generation of test vectors, from data summaries (from CIVA simulation tool developed by CEA) and experimental data (from the device to acquisition of M2M –NDT society). Finally, the architecture developed in this work allows the reconstruction of images with a resolution of 128x128 pixels at more than 10 frames / sec. This is sufficient for the diagnosis of mechanical parts in real time. The increase of ultrasonic sensor elements (128 elements) allows more advanced topological configurations (as a 2D matrix) and providing opportunities to 3D reconstruction (volume of a room). This work has resulted in implementation of validated measurement instrument developed by M2M -NDT.
50

Homogénéisation de grandeurs électromagnétiques dans les milieux cimentaires pour le calcul de teneur en eau / Prediction of cement-based materials' water content with the use of electromagnetic homogenization schemes

Guihard, Vincent 13 September 2018 (has links)
La quantité et la distribution de l'eau interstitielle dans l'espace poral des milieux cimentaires sont des marqueurs fondamentaux de la durabilité des structures de Génie Civil en béton. La connaissance de ces grandeurs est également importante pour l'interprétation de certains essais non destructifs mis en œuvre pour évaluer les performances mécaniques des ouvrages ou détecter certains défauts. L'évaluation de la teneur en eau par méthode non-destructive requiert l'utilisation d'une grandeur intermédiaire telle que la permittivité diélectrique. La relation entre cette propriété électromagnétique et la teneur en eau dépend alors de la composition et donc de la formulation du béton. En électromagnétisme, les lois d'homogénéisation permettent de lier la permittivité effective d'un matériau hétérogène avec la permittivité intrinsèque et la fraction volumique de chaque hétérogénéité présente. Afin de pallier le temps important requis pour l'établissement d'une courbe de calibration expérimentale propre à chaque formulation, l'étude présentée propose la mise en place d'une démarche d'homogénéisation de la permittivité pour lier quantité d'eau présente dans un béton et permittivité macroscopique du matériau. Les travaux présentés rapportent la fabrication, la modélisation et l'utilisation de sondes coaxiales ouvertes pour la mesure de la permittivité complexe de matériaux solides et liquides. Le concept d'estimation de la teneur en eau par utilisation de lois d'homogénéisation est validé pour le cas d'un sable partiellement saturé en eau. Au vu des résultats prometteurs obtenus par modélisation analytique, des schémas d'homogénéisation sont combinés lors d'un processus de remontée d'échelle depuis celle des hydrates jusqu'à celle des granulats, en tenant compte de la morphologie de la microstructure. Les propriétés intrinsèques des principaux constituants d'un béton (granulats, hydrates, ciment anhydre) sont alors mesurées par sonde coaxiale et utilisées en données d'entrée du modèle construit. Une bonne cohérence est observée entre parties réelles de la permittivité simulées et mesurées, pour des échantillons de pâtes de ciment, mortiers et bétons. A la différence des lois expérimentales et empiriques, le modèle construit se caractérise par un temps de calcul quasi-instantané et peut être adapté d'une formulation de béton à une autre en fonction du type de ciment utilisé, de la nature et de la quantité de granulats ou encore de la porosité accessible à l'eau du matériau. / Prediction of delayed behavior in concrete can be significantly improved by monitoring the amount and spatial distribution of water within a concrete structure over time. Water content of cement-based materials can also be required to interpret non-destructive tests such as ultrasonic and radar measurements. Electromagnetic properties of heterogeneous and porous materials, such as dielectric permittivity, are closely related to water content. Measurement of these properties is thus a common non-destructive technique used to assess the moisture content, but a calibration curve is required to link the measured permittivity to the saturation degree. This curve can be determined experimentally, or from empirical models. However, the first approach is tedious and time consuming, while the second one is not adapted to concrete. Hence, this contribution proposes an alternative route, relying on electromagnetic homogenization schemes, to connect the macroscopic permittivity of cement-based materials with the water content of the structure. Therefore, different open-ended coaxial probes were designed, modelled and tested in order to perform complex permittivity measurements of both solids and liquids. The homogenization approach is first validated on unsaturated sand. Then, the permittivity of concrete components (aggregates, hydrates, interstitial liquid, anhydrous cement) was assessed by means of coaxial probe measurements. Finally, a specific combination of analytical homogenization laws taking into account the microstructure's morphology of the material is built. Results show that there is a good correlation between the model and measurements acquired on different cement pastes, mortars and concretes, at different saturation degrees. The model is characterized by a quasi-instantaneous calculation time and can be adapted to different concretes depending on cement type, nature and quantity aggregates or porosity.

Page generated in 0.0756 seconds