Spelling suggestions: "subject:"intratissue ratio."" "subject:"kontrastverhältnisse ratio.""
1 |
Acoustic characterisation of ultrasound contrast agents at high frequencySun, Chao January 2013 (has links)
This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical properties of UCAs at high ultrasonic frequencies is limited. In this thesis, acoustical characterisation of three UCAs was performed using a preclinical ultrasound scanner (Vevo 770, VisualSonics Inc., Canada). Initially the acoustical characterisation of five high frequency transducers was measured using a membrane hydrophone with an active element of 0.2 mm in diameter to quantify the transmitting frequencies, pressures and spatial beam profiles of each of the transducers. Using these transducers and development of appropriate software, high frequency acoustical characterisation (speed and attenuation) of an agar-based tissue mimicking material (TMM) was performed using a broadband substitution technique. The results from this study showed that the acoustical attenuation of TMM varied nonlinearly with frequency and the speed of sound was approximately constant 1548m·s-1 in the frequency range 12-47MHz. The acoustical properties of three commercially available lipid encapsulated UCAs including two clinical UCAs Definity (Lantheus Medical Imaging, USA) and SonoVue (Bracco, Italy) and one preclinical UCAs MicroMarker (untargeted) (VisualSonics, Canada) were studied using the software and techniques developed for TMM characterisation. Attenuation, contrast-to-tissue ratio (CTR) and subharmonic to fundamental ratio were measured at low acoustic pressures. The results showed that large off-resonance and resonant MBs predominantly contributed to the fundamental response and MBs which resonated at half of the driven frequency predominantly contributed to subharmonic response. The effect of needle gauge, temperature and injection rate on the size distribution and acoustic properties of Definity and SonoVue was measured and was found to have significant impacts. Acoustic characterisations of both TMM and UCAs in this thesis extend our understanding from low frequency to high frequency ultrasound and will enable the further development of ultrasound imaging techniques and UCAs design specifically for high frequency ultrasound applications.
|
2 |
Toward increased applicability of ultrasound contrast agentsLarsson, Malin January 2015 (has links)
Ultrasound is one of the most widely used modalities in medical imaging because of its high cost-effectiveness, wide availability in hospitals, generation of real-time images, and use of nonionizing radiation. However, the image quality can be insufficient in some patients. Introducing a contrast agent (CA), which comprises a suspension of 2–6 mm-sized microbubbles, improves the image quality and thus the image analysis. At present, contrast-enhanced ultrasound is frequently used during standard clinical procedures such as kidney, liver, and cardiac (echocardiography) imaging. Multimodality and targeted imaging are future areas for ultrasound CAs. Multimodality imaging may improve diagnostics by simultaneously providing anatomical and functional information. Targeted imaging may allow for identification of particular diseases. The work within this thesis focused mainly on a novel multimodal polymer-shelled CA with the potential to be target specific. In Study I, the acoustic response was determined in a flow phantom by evaluating the contrast-to-tissue-ratio when using contrast sequences available in clinical ultrasound systems. This study showed that a high acoustic pressure is needed for optimal visualization of the polymer-shelled CA. In Study II, the in vivo performance of this CA was evaluated in a rat model, and the blood elimination time and subcellular distribution were determined. In Study III, the efficiency in endocardial border delineation was assessed in a pig model. The polymer-shelled CA had a significantly longer blood circulation time than the commercially available CA SonoVue, which is favorable for target-specific CA, in which a long circulation time increases the probability of target-specific binding. Transmission electron microscopic analysis of tissue sections from liver, kidney, spleen and lungs, obtained at different time points after CA injection showed that macrophages were responsible for the elimination of the polymer-shelled CA. A higher dose of the polymer-shelled CA was needed to obtain similar endocardial border delineation efficiency as that obtained using SonoVue. The results of Studies I–III demonstrate that the polymer-shelled CA has potential applicability in medical imaging. Current guidelines for contrast-enhanced echocardiography are limited to cases of suboptimal image quality or when there is a suspicion of structural abnormalities within the left ventricle. It may be hypothesized that the wider use of contrast-enhanced echocardiography may help to detect some diseases earlier. Study IV assessed the diagnostic outcomes after contrast administration in patients without indications for CA use. The myocardial wall motion score index and ejection fraction were evaluated by experienced and inexperienced readers, and a screening for left ventricular structural abnormalities was performed. More cases of wall motion and structural abnormalities were detected in the contrast-enhanced analysis. Intra- and interobserver variability was lower with the use of CAs. This study suggests that the more widespread use of CAs instead of the current selective approach may contribute to earlier detection of cardiovascular disease. / <p>QC 20150401</p>
|
3 |
Ultraharmonic Imaging of Polymer-shelled Microbubbles / Ultraharmonic-avbildning av mikrobubblor med polymerbaserade skalEvangelou, Dimitrios January 2018 (has links)
Ultrasound has been established as one of the most widely used imaging modalities for diagnostic purposes, due to the several advantages it provides in comparison with other techniques. Hence, ways to further improve the confidence in diagnoses provided by ultrasound are constantly being investigated. One of them is the introduction of Ultrasound Contrast Agents, which can enhance the weak echoes produced by the small vessels, improving the imaging performance. In this study, a setup was created and six ultrasound imaging techniques were implemented by using the Verasonics Research System®, in order to take advantage of the different behavior between the tissue and the Polyvinyl-Alcohol microbubbles, when exposed to ultrasound. These were: Fundamental B-mode, Ultraharmonic, PulseInversion, Subharmonic Pulse Inversion, Ultraharmonic Pulse Inversion, Combination of the Sub- and Ultraharmonic Pulse Inversion. For the assessment of the bubbles’ response, the amplitude spectra were used, which showed a limited detection around the ultraharmonic region. For the evaluation of the imaging performance of the techniques, the Contrast-to-Tissue (CTR) and Contrast-to-Noise Ratios (CNR) were calculated. The Combination of the Sub- and Ultraharmonic Pulse Inversion reported the highest imaging performance among all the techniques. A comparison with previous articles provided a similar pattern in terms of CTR. / Technology
|
4 |
Imagerie de contraste ultrasonore avec transducteurs capacitifs micro-usinés / Contrast agent imaging with capacitive micromachined ultrasonic transducersNovell, Anthony 07 July 2011 (has links)
Les produits de contraste ultrasonore constituent un véritable apport pour l’imagerie échographique et sont aujourd’hui utilisés en clinique pour l’évaluation de la perfusion cardiaque ou encore la détection de tumeurs. Depuis quelques années, les transducteurs capacitifs micro-usinés (cMUTs) se présentent comme une alternative intéressante aux transducteurs piézoélectriques classiques et offrent certains avantages comme une large bande passante. Nous proposons dans cette thèse d’évaluer le potentiel de cette technologie pour l’imagerie de contraste. Dans un premier temps, notre étude s’est orientée vers l’adaptation des cMUTs à l’imagerie non linéaire. Ensuite, de nouvelles méthodes de détection de contraste, basées sur le comportement spécifique des microbulles, ont été développées pour exploiter les avantages de la technologie cMUT. Comparés aux méthodes conventionnelles, les résultats obtenus montrent une meilleure visualisation des agents de contraste par rapport aux tissus environnants. L’utilisation de cMUTs améliore l’efficacité de ces méthodes démontrant, ainsi, leur intérêt pour l’imagerie de contraste. / Using ultrasound contrast agents, many clinical diagnoses have now been improved thanks to new contrast dedicated imaging techniques. Contrast agents are now used routinely in cardiology and in radiology to improve the detection and visualization of blood perfusion in various organs (e.g. tumors). Since a few years, Capacitive Micromachined Ultrasonic Transducers (cMUTs) have emerged as a good alternative to traditional piezoelectric transducer. cMUTs provide several advantages such as wide frequency bandwidth which could be further developed for nonlinear imaging. In this dissertation, we propose to exploit cMUT for contrast agent imaging. Firstly, the excitation signal was adapted to suppress the inherent nonlinear behavior of cMUT. Then, new detection methods based on specific acoustic properties of microbubbles have been developed and evaluated with a cMUT probe. Results show a good suppression from tissue responses whereas echoes from microbubbles are enhanced. Furthermore, the efficiency of each method is improved by the use of cMUT revealing the potential of this new transducer technology for contrast agent detection.
|
Page generated in 0.0926 seconds