• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Projeto de controle de alocação tolerante a faltas para um veículo autônomo subaquático utilizando lógica nebulosa / Failure tolerant allocation control of an autonomous underwater vehicle by using fuzzy

Cardozo, Daisy Isabel Kang 29 November 2013 (has links)
Made available in DSpace on 2017-07-10T17:11:45Z (GMT). No. of bitstreams: 1 DEISY CARDOZO2.pdf: 3855496 bytes, checksum: f8460cbb1dea66b1db54f85149de53c3 (MD5) Previous issue date: 2013-11-29 / Fundação Parque Tecnológico Itaipu / In critical systems such as airplanes, space ships, underwater vehicles, nuclear power plants, among others, failures and faults can bring catastrophic consequences. Therefore, it is required to take into account possibilities of degradation in the performance of its components. This work presents a fault-tolerant control for the propulsion system of the BA-1, an Autonomous Underwater Vehicle (AUV), by using a Fuzzy Allocation Control. This methodology takes advantage of thrusters redundancy, common in autonomous vehicles, to relocate the available thrusters forces in failure situations. That is, it performs an on line reconfiguration of the thrusterforce allocation matrix in the pseudo inverse method. This approach was tested for all the possible cases of horizontal failure of the BA-1 vehicle by means of numerical simulations.Two cases were studied for each failure situation over a linear trajectory in the x axis; the first one studies the case where failures occurs when the vehicle starts its trajectory; and the second one studies the case where the vehicle suffers failures while travelling in its maximum speed.The studies show that the vehicle has an acceptable behavior on most situations, except when it suffers failures of two thrusters which are parallel to the x axis when travelling at maximum speed. However that problem could be solved if the reference trajectory is modified after the failure occurs. In all, the control system developed presents quick responses and an acceptable degradation of performance. / Em sistemas críticos como aeronaves, naves espaciais, veículos subaquáticos, usinas nucleares entre outros, as consequências da falha ou falta de um componente pode ser catastrófica. Portanto, considerar a possibilidade de desempenho degradado por causa de falhas ou faltas em algum dos componentes é um requisito inerente desses sistemas. Este trabalho apresenta um controle tolerante a faltas do sistema de propulsão de um Veículo Autônomo Subaquático, denominado BA-1, utilizando um controle de alocação nebuloso. Esta metodologia aproveita as vantagens da redundância dos propulsores, comum em veículos autônomos, para realocar as forças de propulsão em situações de falta. Assim, este controle realiza uma reconfiguração on line da matriz de alocação de forças dos propulsores utilizada no método da pseudo inversa. Esta proposta foi testada para todos os possíveis casos de falta horizontal do BA-1 mediante simulações numéricas. Foram utilizados dois estudos de casos para uma trajetória reta no o eixo x; o primeiro quando o veículo inicia a sua trajetória com falta nos propulsores, e o se- gundo quando o veículo sofre faltas nos propulsores na sua velocidade máxima de navegação. Os resultados obtidos mostram que o veículo tem um comportamento aceitável em todas as situações excetuando quando o veículo sofre de falta dos propulsores paralelos ao eixo x na sua máxima velocidade, porém poderia ser solucionado modificando a trajetória desejada na ocorrência dessa falta. Contudo o modelo desenvolvido apresenta rapidez nas respostas e desempenho degradado aceitável.
22

Flight Control System Design For An Over Actuated Uav Against Actuator Failures

Isik, Sinem 01 February 2010 (has links) (PDF)
This thesis describes the automatic flight control systems designed for a conventional and an over actuated unmanned air vehicle (UAV). A nonlinear simulation model including the flight mechanics equations together with the interpolated nonlinear aerodynamics, environmental effects, mass-inertia properties, thrust calculations and actuator dynamics is created / trim and linearization codes are developed. Automatic flight control system of the conventional UAV is designed by using both classical and robust control methods. Performances of the designs for full autonomous flight are tested through nonlinear simulations for different maneuvers in the presence of uncertainties and disturbances in the aircraft model. The fault tolerant control of an over actuated UAV is the main concern of the thesis. The flight control system is designed using classical control techniques. Two static control allocation methods are examined: Moore-Penrose pseudo inverse and blended inverse. For this purpose, an aircraft with three sets of ailerons is employed. It is shown that with redundant control surfaces, fault tolerant control is possible. Although both of the static control allocation methods are found to be quite successful to realize the maneuvers, the new blended inverse algorithm is shown to be more effective in controlling the aircraft when some of the control surfaces are lost. It is also demonstrated that, with redundant control surfaces it is possible to recover the aircraft during a maneuver even some of the control surfaces are damaged or got stuck at a particular deflection.
23

Control allocation as part of a fault-tolerant control architecture for UAVs

Basson, Lionel 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: The development of a control allocation system for use as part of a fault-tolerant control (FTC) system in unmanned aerial vehicles (UAVs) is presented. This system plays a vital role in minimising the possibility that a fault will necessitate the reconfiguration of the control, guidance or navigation systems of the aircraft by minimising the difference between the desired and achievable aircraft performance parameters. This is achieved by optimising the allocation of control effort commanded by the virtual actuators to the physical actuators present on the aircraft. A simple general six degree of freedom aircraft model is presented that contains all of the relevant terms needed to find the trim biases of the aircraft actuators and evaluate the performance of the virtual actuators. This model was used to develop a control allocation formulation that optimises the performance of the virtual actuators of the aircraft while minimising adverse effects and avoiding actuator saturation. The resulting problem formulation was formulated as a multi-objective optimisation problem which was solved using the sequential quadratic programming method. The control allocation system was practically implemented and tested. A number of failure categories of varying severity were defined and two aircraft with different levels of actuator redundancy were used to test the system. The control allocation algorithm was evaluated for each failure category, aircraft test case and for a number of differing control allocation system configurations. A number of enhancements were then made to the control allocation system which included adding frequency-based allocation and adapting the algorithm for an unconventional ducted-fan UAV. The control allocation system is shown to be applicable to a number of different conventional aircraft configurations with no alterations as well as being applicable to unconventional aircraft with minor alterations. The control allocation system is shown to be capable of handling both single and multiple actuator failures and the importance of actuator redundancy is highlighted as a factor that influences the effectiveness of control allocation. The control allocation system can be effectively used as part of a FTC system or as a tool that can be used to investigate control allocation and aircraft redundancy. / AFRIKAANSE OPSOMMING: Die ontwikkeling van ’n beheertoekenning sisteem vir gebruik as deel van ’n fout verdraagsame beheersisteem in onbemande lugvaartuie word voorgelê. Hierdie sisteem speel ’n essensiële rol in die vermindering van die moontlikheid dat ’n fout die herkonfigurasie van die beheer, bestuur of navigasiesisteme van die vaartuig tot gevolg sal hê, deur die verskil te verminder tussen die verlangde en bereikbare werkverrigtingsraamwerk van die vaartuig. Dit word bereik deur die optimisering van die toekenning van beheerpoging aangevoer deur die virtuele aktueerders na die fisiese aktueerders teenwoordig op die vaartuig. ’n Eenvoudige algemene ses grade van vryheid lugvaartuig model word voorgestel wat al die relevante terme bevat wat benodig word om die onewewigtigheid verstelling van die vaartuig se aktueerders te vind en die werksverrigting van die virtuele aktueerders te evalueer. Hierdie model is gebruik om ’n beheer toekenning formulering te ontwikkel wat die werkverrigting van die virtuele aktueerders van die vaartuig optimiseer terwyl nadelige gevolge verminder word asook aktueerder versadiging vermy word. Die gevolglike probleem formulering is omskryf as ’n multi-doel optimiserings probleem wat opgelos is deur gebruik van die sekwensiële kwadratiese programmerings metode. Die beheertoekenning sisteem is prakties geïmplementeer en getoets. ’n Aantal fout kategorieë van verskillende grade van erns is gedefinieer en twee vaartuie met verskillende vlakke van aktueerder oortolligheid is gebruik om die sisteem te toets. Die beheer toekenning algoritme is geëvalueer vir elke fout kategorie, vaartuig toetsgeval, asook vir ’n aantal verskillende beheertoekenning sisteem konfigurasies. ’n Aantal verbeterings is aangebring aan die beheertoekenning sisteem, naamlik die toevoeging van frekwensie gebaseerde toekenning en wysiging van die algoritme vir ’n onkonvensionele onbemande geleide waaier lugvaartuig. Die beheertoekenning sisteem is van toepassing op ’n aantal verskillende konvensionele vaartuig konfigurasies met geen verstellings asook van toepassing op onkonvensionele vaartuie met geringe verstellings. Die beheertoekenning sisteem kan beide enkel- en veelvoudige aktueerder tekortkominge hanteer en die belangrikheid van aktueerder oortolligheid is beklemtoon as ’n faktor wat die effektiwiteit van beheertoekenning beïnvloed. Die beheertoekenning sisteem kan effektief geïmplementeer word as deel van ’n fout verdraagsame beheersisteem of as ’n werktuig om beheertoekenning en vaartuig oortolligheid te ondersoek.
24

Méthodes de commande par allocation de convertisseurs statiques polyphasés, multi-niveaux : de la modélisation à la mise en oeuvre temps-réel / Control allocation methods for polyphase, multilevel static converters : from modelling to real-time implementation

Bouarfa, Abdelkader 22 November 2017 (has links)
Dans nos travaux, nous nous intéressons à la commande des convertisseurs statiques à grand nombre d'interrupteurs. Le développement des topologies multi-niveaux multi-bras a ouvert l'accès aux domaines de la forte puissance et de la haute qualité harmonique. Outre cette montée en puissance, la commande spéciale de ces dispositifs permet de conférer au convertisseur des fonctionnalités avancées de plus en plus nécessaires, comme la possibilité de filtrage actif des harmoniques, la tolérance aux pannes, la gestion du réactif, les liaisons HVDC, etc. Toutefois, un plus grand nombre d'interrupteurs au sein d'une même structure de conversion se traduit par une forte croissance du nombre de variables de commande, des degrés de liberté et par une explosion combinatoire du nombre de configurations possibles. La synthèse de lois de commande suivant les approches traditionnellement conçues pour les topologies classiques, comme les méthodes de modulation vectorielle fondées sur la représentation géométrique du convertisseur, en devient rapidement fastidieuse pour les nouvelles topologies plus complexes. De plus, les interrupteurs présents en surnombre apportent des redondances fortes qui ne sont pas nécessairement exploitées, ou du moins arbitrairement. Nous proposons une nouvelle approche de commande qui se veut moins dépendante du nombre d'interrupteurs, et qui s'affranchit des limitations induites par les méthodes de modulation géométrique. Notre approche consiste dans un premier temps à formuler de manière algébrique des problèmes de commande qui sont généralement sous-déterminés, témoignant de la présence de redondances ou degrés de liberté, et contraints, car tenant compte des limitations propres aux rapports cycliques. De manière intéressante, ces problèmes offrent une similarité avec les problèmes dits d'allocation de commande rencontrés en aéronautique, en marine ou en robotique. Dans un second temps, dans le but de fournir à chaque période de découpage une solution de commande unique et optimisée, nous concevons de nouvelles méthodes d'allocation pour les convertisseurs statiques fondées sur l'optimisation numérique en ligne à partir de techniques d'optimisation linéaire. En conséquence, les rapports cycliques sont automatiquement optimisés pour satisfaire aux références de tension tout en respectant les saturations et en exploitant les redondances disponibles selon l'état actuel du convertisseur. Nous mettons en lumière les propriétés naturellement offertes par nos méthodes. Notamment, toutes nos solutions de modulation étendent de manière maximale la zone de linéarité du convertisseur. Nous proposons des méthodes d'allocation pour la commande en tension ou en courant de topologies variées : l'onduleur quatre bras deux niveaux, l'onduleur multicellulaire à condensateurs flottants, l'onduleur modulaire multi-niveaux. Concernant les convertisseurs multicellulaires, nos méthodes d'allocation utilisent automatiquement les degrés de liberté disponible pour fournir un équilibrage actif très rapide des tensions de condensateurs flottants. Aussi, grâce à la formulation algébrique des contraintes de commande, nos algorithmes peuvent prendre en compte un défaut sur un interrupteur pour conférer au convertisseur une propriété de tolérance aux fautes du point de vue de la commande. / In our works, we are interested in control of high-switch-count power converters. The development of multileg, multilevel converters has opened the access to high power and high harmonic quality. The special control of these devices brings to the converter advanced abilities that are more and more requested nowadays, like active harmonic filtering, fault tolerance, active and reactive power transfer, High Voltage Direct Current (HVDC) links, etc. However, a higher number of switches in a conversion structure leads to a higher number of control variables, as well as more redundancies and a combinatorial explosion of the number of possible configurations. The development of control laws resulting from approaches traditionally designed for classical topologies, as for space vector modulation methods, becomes harder for new, much complex topologies. Moreover, the too many available switches bring strong control redundancies that are not necessarily exploited, at least arbitrarily. We propose a new control approach that is expected to be less dependent on the number of switches, and that does not suffer from limitations proper to geometrical modulation methods. Firstly, our approach consists in the algebraic formulation of control problems that are generally under-determined, highlighting the presence of redundancies and degrees of freedom, and constrained, because control limitations are taken into account. Interestingly, a connection can be highlighted to the so-called control allocation problem in flight control, robotics, or marine applications. Secondly, in order to compute a unique and optimized control solution at each switching period, we develop new control allocation methods for power converters based on on-line numerical optimization using linear programming techniques. Consequently, duty cycles are automatically optimized to satisfy voltage references while respecting saturations and exploiting available redundancies depending on the state of the converter. We highlight the properties naturally offered by our methods. In particular, all modulation solutions yield a maximized extension of the linearity range of the converter. We propose control allocation methods for the voltage or current control of many topologies: the four-leg two-level inverter, the multicellular flying capacitor inverter, the modular multilevel inverter.
25

Optimal Coordination of Chassis Systems for Vehicle Motion Control / Coordination Optimale des Systèmes Châssis pour le Contrôle du Mouvement des Voitures

Kissai, Moad 17 June 2019 (has links)
Le contrôle global du châssis a fait récemment l'objet d'une attention particulière. Cela serait motivé surtout par l’approche des véhicules entièrement autonomes. Ces véhicules, en particulier le niveau 5 d’automatisation SAE (J3016), devraient remplacer le conducteur humain dans presque toutes les situations. Le véhicule automatisé devrait être capable de gérer en harmonie des situations couplées où sont intégrés le contrôle longitudinal, latéral et éventuellement vertical. Pour ce faire, le véhicule dispose de plusieurs systèmes intégrés par axe de contrôle. En effet, les équipementiers automobiles et les nouveaux acteurs de l'industrie automobile proposent continuellement de nouvelles solutions pour satisfaire des performances bien spécifiques. Le constructeur automobile doit quant à lui coordonner différents sous-systèmes provenant de différentes parties prenantes afin de garantir une expérience de conduite fiable et confortable. Jusqu'à présent, les constructeurs automobiles privilégiaient des solutions simples consistant à ajouter une couche de coordination en aval des sous-systèmes concurrents afin de limiter les potentiels conflits. La plupart des stratégies adoptées consistent à prioriser un système par rapport à un autre en fonction de certains scénarios conflictuels prévisibles. Les véhicules autonomes ont besoin de sous-systèmes supplémentaires pour fonctionner en toute sécurité. Ainsi, les interactions entre les sous-systèmes s'amplifieront au point de devenir imprévisibles. Cette thèse met l'accent sur l'approche de coordination qui devrait être adoptée par les véhicules du futur. En particulier, la couche de coordination est déplacée en amont des sous-systèmes autonomes pour assurer une distribution de commande optimale. Cette couche agit comme un superviseur basé sur des algorithmes d'allocation optimale du contrôle. La synthèse des correcteurs repose sur les théories du contrôle robuste permettant de faire face aux changements environnementaux et aux incertitudes paramétriques et dynamiques du véhicule. Les résultats ont d’abord montré que même en ce qui concerne les véhicules actuels, l’approche en amont peut offrir des avantages supplémentaires pour ce qui est de la résolution de problèmes à objectifs multiples. En outre, l’approche en amont permet de coordonner les sous-systèmes des véhicules présentant une sur-actionnement plus élevé. La tolérance aux pannes peut être assurée entre des systèmes de châssis complètement différents, et des objectifs qualitatifs, s'ils sont rigoureusement formalisés, peuvent être satisfaits. Plus les sous-systèmes seront nombreux à l'avenir, plus l'approche en amont deviendrait pertinente pour le contrôle du mouvement des véhicules. Nous espérons que les avantages conséquents présentés dans cette thèse grâce à une approche de coordination en amont optimale encourageraient les constructeurs automobiles et leurs équipementiers à opter pour des solutions plus ouvertes, à proposer ensemble les normalisations nécessaires et accélérer ainsi le développement des véhicules autonomes. / A large interest has been given recently to global chassis control. One of the main reasons for this would be the approach of fully autonomous vehicles. These vehicles, especially the SAE (J3016) level 5 of automation, are expected to replace the human driver in all situations. The automated vehicle should be able to manage coupled situations in harmony where longitudinal control, lateral control, and eventually vertical control are involved. To do so, the vehicle has more than one embedded system per control axis. Equipment suppliers and new entering automotive actors are continually proposing new solutions to satisfy a specific performance required from future passenger cars. Consequently, the car manufacturer has to coordinate different subsystems coming from different stakeholders to ensure a safe and comfortable driving experience. Until these days, car manufactures favoured simple solutions consisting on adding a coordination layer downstream the competing subsystems in order to mitigate eventual conflicts. Most of strategies adopted consist on prioritizing one system over another depending on predictable conflicting scenarios. Autonomous vehicles need additional subsystems to operate safely. Interactions between these subsystems will increase to the point of becoming unpredictable. This thesis focus on the coordination approach that should be adopted by future vehicles. Particularly, the coordination layer is moved upstream the standalone subsystems to ensure an optimal control distribution. This layer acts as a supervisor depending on optimization-based control allocation algorithms. The control synthesis is based on robust control theories to face environmental changes and the vehicle’s parameters and dynamics uncertainties. Results showed first that even regarding today’s vehicles, the upstream approach can offer additional advantages when it comes to multiple objectives problems solving. In addition, the upstream approach is able to coordinate subsystems of vehicles with a higher over-actuation. Fault-tolerance can be ensured between completely different chassis systems, and qualitative objectives, if rigorously formalized, can be satisfied. The more numerous subsystems will get in the future, the more relevant the upstream approach would become to vehicle motion control. We expect that the important benefits shown in this thesis thanks to an optimal upstream coordination approach would encourage car manufacturers and equipment to switch towards more open solutions, propose together the necessary standardizations, and accelerate the autonomous vehicles development.
26

Actuator Modeling and Control For a Three Degrees of Freedom Differential Thrust Control Testbed

Garimella, Suresh January 2007 (has links)
No description available.
27

Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)

Soltani, Amirmasoud January 2014 (has links)
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.
28

Contribution to adaptative sliding mode, fault tolerant control and control allocation of wind turbine system / Contribution à la commande par modes glissants adaptative et tolérantes aux défauts : Application au système éolien

Liu, Xinyi 25 November 2016 (has links)
Les principaux défis pour le déploiement de systèmes de conversion de l'énergie éolienne est de maximiser la puissance électrique produite, malgré les variations des conditions météorologiques, tout en minimisant les coûts de fabrication et de maintenance du système. L'efficacité de la turbine éolienne est fortement dépendante des perturbations de l'environnement et des paramètres variables du système, tels que la vitesse du vent et l'angle de tangage. Les incertitudes sur le système sont difficiles à modéliser avec précision alors qu'ils affectent sa stabilité.Afin d'assurer un état de fonctionnement optimal, malgré les perturbations, le commande adaptative peut jouer un rôle déterminant. D'autre part, la synthèse de commandes tolérantes aux défauts, capables de maintenir les éoliennes connectées au réseau après la survenance de certains défauts est indispensable pour le bon fonctionnement du réseau. Le travail de cette thèse porte sur la mise en place de lois de commande adaptatives et tolérantes aux défauts appliqués aux systèmes de conversion de l'énergie éolienne. Après un état de l'art, les contributions de la thèse sont :Dans la première partie de la thèse, un modèle incertain non linéaire du système de conversion d'énergie éolienne avec un générateur à induction à double alimentation est proposé. Une nouvelles approches de commande adaptative par mode glissant est synthétisée et ensuite appliquée pour optimiser l'énergie issue de l'éolienne.Dans la deuxième partie, une nouvelle commande par modes glissants tolérante aux défauts et basée sur les modes glissants intégrales est présentée. Puis, cette méthode est appliquée afin de forcer la vitesse de la turbine éolienne à sa valeur optimale en prenant en compte des défauts qui surviennent sur l'actionneur. / The main challenges for the deployment of wind energy conversion systems (WECS) are to maximize the amount of good quality electrical power extracted from wind energy over a significantly wide range of weather conditions and minimize both manufacturing and maintenance costs. Wind turbine's efficiency is highly dependent on environmental disturbances and varying parameters for operating conditions, such as wind speed, pitch angle, tip-speed ratio, sensitive resistor and inductance. Uncertainties on the system are hard to model exactly while it affects the stability of the system. In order to ensure an optimal operating condition, with unknown perturbations, adaptive control can play an important role. On the other hand, a Fault Tolerant Control (FTC) with control allocation that is able to maintain the WECS connected after the occurrence of certain faults can avoid major economic losses. The thesis work concerns the establishment of an adaptive control and fault diagnosis and tolerant control of WECS. After a literature review, the contributions of the thesis are:In the first part of the thesis, a nonlinear uncertain model of the wind energy conversion system with a doubly fed induction generator (DFIG) is proposed. A novel Lyapunov-based adaptive Sliding Mode (HOSM) controller is designed to optimize the generated power.In the second part, a new output integral sliding mode methodology for fault tolerant control with control allocation of linear time varying systems is presented. Then, this methodology has been applied in order to force the wind turbine speed to its optimal value the presence of faults in the actuator.
29

Diagnostic and fault-tolerant control applied to an unmanned aerial vehicle / Diagnostic et tolérance aux fautes appliqués à un drone

Merheb, Abdel-Razzak 05 December 2016 (has links)
Les travaux de recherches sur la commande, le diagnostic et la tolérance aux défauts appliqués aux drones deviennent de plus en plus populaires. Il est judicieux de concevoir des lois de commande qui garantissent la stabilité et les performances du drone, non seulement dans le cas nominal, mais également en présence de fortes perturbations et de défauts.Dans cette thèse, un nouvel algorithme bio-inspiré adapté pour la recherche de solutions dans des problèmes d’optimisation est développé. Cet algorithme est utilisé pour trouver les gains des différents contrôleurs conçus pour les drones. La commande par mode glissant est utilisée pour développer deux contrôleurs passifs tolérants aux défauts pour les quadrirotors: un contrôleur par mode glissant augmentée avec un intégrateur, et un contrôleur par mode glissant implémenté en cascade. Parce que les commandes passives ont une robustesse réduite, une commande active par mode glissant est développée. Pour traiter les défauts extrêmes, un contrôleur d’urgence basé sur la conversion du quadrirotor en trirotor est développé. Les commandes actives, passives, et le contrôleur d’urgences sont ensuite intégrés pour former un contrôleur tolérant aux défauts capable de gérer un grand nombre de défaillances tout en garantissant les ressources actionneur et en limitant la charge de calcul du processeur. Finalement, des contrôleurs tolérants aux défauts, actifs et passifs, basés sur des méthodes par mode glissant du premier et deuxième ordre sont développées pour les octorotors. La commande active utilise des méthodes d’allocation de contrôles pour redistribuer les efforts sur les actionneurs sains, réduisant ainsi l’effet du défaut. / Unmanned Aerial Vehicles (UAV) are more and more popular for their civil and military applications. Classical control laws usually show weaknesses in the presence of parameter uncertainties, environmental disturbances, and actuator and sensor faults. Therefore, it is judicious to design a control law capable of stabilizing the UAV not only in the fault-free nominal cases, but also in the presence of disturbances and faults. In this thesis, a new bio-inspired search algorithm called Ecological Systems Algorithm (ESA) suitable for engineering optimization problems is developed. The algorithm is used over the thesis to find optimal gains for the fault tolerant controllers. Sliding Mode Control theory is used to develop two Passive Fault Tolerant Controllers for quadrotor UAVs: Regular and Cascaded SMC. Because Passive Controllers handle a few numbers of faults, an Active Sliding Mode Fault Tolerant Controller using Kalman Filter is developed. To overcome severe faults and failures, an emergency controller based on the Quadrotor-to-Trirotor conversion maneuver is developed. The Controllers developed so far (Passive, Active, and emergency controllers) are then integrated to form the Integrated Fault Tolerant Controller (IFTC). The IFTC is a powerful controller that is able to handle a wide number of faults, and save actuator resources as well as processor computational effort. Finally, Passive and Active Fault Tolerant Controllers are designed for octorotor UAVs based on First Order and Second Order Sliding Mode Control. The AFTC uses Dynamic and Pseudo-Inverse Control Allocation methods to redistribute the control effort among healthy actuators reducing the effect of fault.

Page generated in 0.0923 seconds