• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wavebender GAN : Deep architecture for high-quality and controllable speech synthesis through interpretable features and exchangeable neural synthesizers / Wavebender GAN : Djup arkitektur för kontrollerbar talsyntes genom tolkningsbara attribut och utbytbara neurala syntessystem

Döhler Beck, Gustavo Teodoro January 2021 (has links)
Modeling humans’ speech is a challenging task that originally required a coalition between phoneticians and speech engineers. Yet, the latter, disengaged from phoneticians, have strived for evermore natural speech synthesis in the absence of an awareness of speech modelling due to data- driven and ever-growing deep learning models. By virtue of decades of detachment between phoneticians and speech engineers, this thesis presents a deep learning architecture, alleged Wavebender GAN, that predicts mel- spectrograms that are processed by a vocoder, HiFi-GAN, to synthesize speech. Wavebender GAN pushes for progress in both speech science and technology, allowing phoneticians to manipulate stimuli and test phonological models supported by high-quality synthesized speeches generated through interpretable low-level signal properties. This work sets a new step of cooperation for phoneticians and speech engineers. / Att modellera mänskligt tal är en utmanande uppgift som ursprungligen krävde en samverkan mellan fonetiker och taltekniker. De senare har dock, utan att vara kopplade till fonetikerna, strävat efter en allt mer naturlig talsyntes i avsaknad av en djup medvetenhet om talmodellering på grund av datadrivna och ständigt växande modeller fördjupinlärning. Med anledning av decennier av distansering mellan fonetiker och taltekniker presenteras i denna avhandling en arkitektur för djupinlärning, som påstås vara Wavebender GAN, som förutsäger mel-spektrogram som tas emot av en vocoder, HiFi-GAN, för att syntetisera tal. Wavebender GAN driver på för framsteg inom både tal vetenskap och teknik, vilket gör det möjligt för fonetiker att manipulera stimulus och testa fonologiska modeller som stöds av högkvalitativa syntetiserade tal som genereras genom tolkningsbara signalegenskaper på lågnivå. Detta arbete inleder en ny era av samarbete för fonetiker och taltekniker.

Page generated in 0.0662 seconds