• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detektor tempa hudebních nahrávek na bázi neuronové sítě / Tempo detector based on a neural network

Suchánek, Tomáš January 2021 (has links)
This Master’s thesis deals with beat tracking systems, whose functionality is based on neural networks. It describes the structure of these systems and how the signal is processed in their individual blocks. Emphasis is then placed on recurrent and temporal convolutional networks, which by they nature can effectively detect tempo and beats in audio recordings. The selected methods, network architectures and their modifications are then implemented within a comprehensive detection system, which is further tested and evaluated through a cross-validation process on a genre-diverse data-set. The results show that the system, with proposed temporal convolutional network architecture, produces comparable results with foreign publications. For example, within the SMC dataset, it proved to be the most successful, on the contrary, in the case of other datasets it was slightly below the accuracy of state-of-the-art systems. In addition,the proposed network retains low computational complexity despite increased number of internal parameters.
2

Wavebender GAN : Deep architecture for high-quality and controllable speech synthesis through interpretable features and exchangeable neural synthesizers / Wavebender GAN : Djup arkitektur för kontrollerbar talsyntes genom tolkningsbara attribut och utbytbara neurala syntessystem

Döhler Beck, Gustavo Teodoro January 2021 (has links)
Modeling humans’ speech is a challenging task that originally required a coalition between phoneticians and speech engineers. Yet, the latter, disengaged from phoneticians, have strived for evermore natural speech synthesis in the absence of an awareness of speech modelling due to data- driven and ever-growing deep learning models. By virtue of decades of detachment between phoneticians and speech engineers, this thesis presents a deep learning architecture, alleged Wavebender GAN, that predicts mel- spectrograms that are processed by a vocoder, HiFi-GAN, to synthesize speech. Wavebender GAN pushes for progress in both speech science and technology, allowing phoneticians to manipulate stimuli and test phonological models supported by high-quality synthesized speeches generated through interpretable low-level signal properties. This work sets a new step of cooperation for phoneticians and speech engineers. / Att modellera mänskligt tal är en utmanande uppgift som ursprungligen krävde en samverkan mellan fonetiker och taltekniker. De senare har dock, utan att vara kopplade till fonetikerna, strävat efter en allt mer naturlig talsyntes i avsaknad av en djup medvetenhet om talmodellering på grund av datadrivna och ständigt växande modeller fördjupinlärning. Med anledning av decennier av distansering mellan fonetiker och taltekniker presenteras i denna avhandling en arkitektur för djupinlärning, som påstås vara Wavebender GAN, som förutsäger mel-spektrogram som tas emot av en vocoder, HiFi-GAN, för att syntetisera tal. Wavebender GAN driver på för framsteg inom både tal vetenskap och teknik, vilket gör det möjligt för fonetiker att manipulera stimulus och testa fonologiska modeller som stöds av högkvalitativa syntetiserade tal som genereras genom tolkningsbara signalegenskaper på lågnivå. Detta arbete inleder en ny era av samarbete för fonetiker och taltekniker.
3

Automatické tagování hudebních děl pomocí metod strojového učení / Automatic tagging of musical compositions using machine learning methods

Semela, René January 2020 (has links)
One of the many challenges of machine learning are systems for automatic tagging of music, the complexity of this issue in particular. These systems can be practically used in the content analysis of music or the sorting of music libraries. This thesis deals with the design, training, testing, and evaluation of artificial neural network architectures for automatic tagging of music. In the beginning, attention is paid to the setting of the theoretical foundation of this field. In the practical part of this thesis, 8 architectures of neural networks are designed (4 fully convolutional and 4 convolutional recurrent). These architectures are then trained using the MagnaTagATune Dataset and mel spectrogram. After training, these architectures are tested and evaluated. The best results are achieved by the four-layer convolutional recurrent neural network (CRNN4) with the ROC-AUC = 0.9046 ± 0.0016. As the next step of the practical part of this thesis, a completely new Last.fm Dataset 2020 is created. This dataset uses Last.fm and Spotify API for data acquisition and contains 100 tags and 122877 tracks. The most successful architectures are then trained, tested, and evaluated on this new dataset. The best results on this dataset are achieved by the six-layer fully convolutional neural network (FCNN6) with the ROC-AUC = 0.8590 ± 0.0011. Finally, a simple application is introduced as a concluding point of this thesis. This application is designed for testing individual neural network architectures on a user-inserted audio file. Overall results of this thesis are similar to other papers on the same topic, but this thesis brings several new findings and innovations. In terms of innovations, a significant reduction in the complexity of individual neural network architectures is achieved while maintaining similar results.

Page generated in 0.0526 seconds