• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 10
  • 10
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 73
  • 44
  • 26
  • 16
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Feature Engineering and Machine Learning for Driver Sleepiness Detection

Keelan, Oliver, Mårtensson, Henrik January 2017 (has links)
Falling asleep while operating a moving vehicle is a contributing factor to the statistics of road related accidents. It has been estimated that 20% of all accidents where a vehicle has been involved are due to sleepiness behind the wheel. To prevent accidents and to save lives are of uttermost importance. In this thesis, given the world’s largest dataset of driver participants, two methods of evaluating driver sleepiness have been evaluated. The first method was based on the creation of epochs from lane departures and KSS, whilst the second method was based solely on the creation of epochs based on KSS. From the epochs, a number of features were extracted from both physiological signals and the car’s controller area network. The most important features were selected via a feature selection step, using sequential forward floating selection. The selected features were trained and evaluated on linear SVM, Gaussian SVM, KNN, random forest and adaboost. The random forest classifier was chosen in all cases when classifying previously unseen data.The results shows that method 1 was prone to overfit. Method 2 proved to be considerably better, and did not suffer from overfitting. The test results regarding method 2 were as follows; sensitivity = 80.3%, specificity = 96.3% and accuracy = 93.5%.The most prominent features overall were found in the EEG and EOG domain together with the sleep/wake predictor feature. However indications have been made that complexities might contribute to the detection of sleepiness as well, especially the Higuchi’s fractal dimension.
62

Modulär och skalbar design av kommunikationsbussar i hjullastare / Modular and scalable design of communication buses in wheel loaders

Murtomäki, Jesper, Nylén, Ki January 2021 (has links)
In this thesis, an analysis of CAN-bus physical layer implementation in Volvo Wheel Loaders is made. The study addresses questions on how to achieve modular and scalable bus designs from a harness installation viewpoint. Strategies for designing systems to work for a variety of different machine configurations while minimizing part numbers and manual work in factory plants are investigated. Special consideration was taken to the regulating CAN standards to find feasible solutions that fulfills the design requirements in the standards. It was identified that modularity and scalability can be achieved in many ways. As a result of this, different solutions are presented that can be used to promote modularity and scalability of CAN-buses. The solutions are divided into sub solutions and are categorized into topology strategies and termination strategies. By combining different sub solutions when designing a CAN-bus, one can achieve different levels of modularity and scalability in their system.
63

Sistema de comunicações tolerante a falhas e de baixa complexidade para um veículo eléctrico

Santos, Bruno Laranjo dos January 2012 (has links)
Tese de mestrado. Mestrado integrado em Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 2012
64

Influence des fautes transitoires sur la fiabilité d'un système commandé en réseau

Ghostine, Rony 12 June 2008 (has links) (PDF)
Ce travail s'inscrit dans le cadre de l'évaluation de la sûreté de fonctionnement des systèmes commandés en réseau (SCR). La capacité des systèmes de commandes à compenser les effets de certaines défaillances de composants amène à redéfinir le concept de défaillances du système. La conséquence est que l'évaluation de la fiabilité prévisionnelle du système est dépendante de l'évaluation fonctionnelle et devient impossible avec les méthodes traditionnelles de la sûreté de fonctionnement. Pour surmonter ces difficultés, une approche basée sur la modélisation en vue de la simulation est proposée. Nous avons choisi les Réseaux d'activités stochastiques (SAN) largement connus dans la modélisation des protocoles de communication ainsi que dans les études de la sûreté de fonctionnement. Dans un premier temps, nous avons cherché à identifier l'incidence de deux types de défaillances fugitives : la perte d'un échantillon d'une part et le retard d'un échantillon dans la boucle de régulation d'autre part. Après, nous simulons le comportement en présence des deux types de perturbations simultanément, mettant en évidence des effets cumulatifs. Si on tient compte maintenant du fait que l'origine des pertes ou retards est due à la présence du réseau, il faut l'introduire dans le modèle. On introduit alors dans le modèle global du système la représentation SAN d'un réseau CAN et l'injection des défaillances dans celui-ci. La méthode de Monte Carlo est utilisée pour estimer les indicateurs de sûreté de fonctionnement et on montre l'influence de certains facteurs comme la charge du réseau par exemple. Nous avons proposé une méthode et les outils associés pour approcher cette évaluation par simulation et ainsi apporter une aide à la conception des systèmes satisfaisant à des exigences critiques sur certains paramètres de performance.
65

Time-triggered Controller Area Network (ttcan) Communication Scheduling: A Systematic Approach

Keskin, Ugur 01 August 2008 (has links) (PDF)
Time-Triggered Controller Area Network (TTCAN) is a hybrid communication paradigm with combining both time-triggered and event-triggered traffic scheduling. Different from the standard Controller Area Network (CAN), communication in TTCAN is performed according to a pre-computed, fixed (during system run) schedule that is called as TTCAN System Matrix. Thus, communication performance of TTCAN network is directly related to structure of the system matrix, which makes the design of system matrix a crucial process. The study in this thesis consists of the extended work on the development of a systematic approach for system matrix construction. Methods for periodic message scheduling and an approach for aperiodic message scheduling are proposed with the aim of constructing a feasible system matrix, combining three important aspects: message properties, protocol constraints and system performance requirements in terms of designated performance metrics. Also, system matrix design, analyses and performance evaluation are performed on example message sets with the help of two developed software tools.
66

Development of a radiation resistant communication node for satellite sub-systems

Thesnaar, Emile Jacobus 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Within a complex electronic system, sub-system communication forms the backbone of the functionality of any satellite. It allows multiple processors to run simultaneously and data to be shared amongst them. Without it, a single processor would have to control the entire satellite. Not only would such a design then be overly complicated, but the processor would also not have sufficient capacity to service all the components efficiently. Furthermore the detrimental effects that radiation have on integrated circuits are well documented and can be anything from a single bit flip to a complete integrated circuit failure. If not repaired, a failure on a sub-system communication bus could lead to the loss of the entire satellite. Die goal is to create more radiation resistant Controller-Area-Network (CAN) node. Since a full triple modular redundant design will have a large footprint and high power consumption, a combination of techniques will be applied and tested. The goal is to achieve improved footprint utilisation over triple modular redundancy, while still maintaining good resistance to Single Event Upsets (SEU). By applying simulation, it was sufficiently proven that the implementation of the individual techniques used functioned according to expectations. These techniques included error detection and correction using Hamming Codes, single event transient filter and triple modular redundancy. Having applied these mitigation techniques, the footprint of the CAN controller increased by only 116%. Simulation showed that the Error Detection and Correction and Triple Modular Redundancy worked effectively with the CAN controller, and that the CAN controller could function as originally intended. Using radiation testing, the design proved to be more resistant to SEUs than the unmitigated CAN controller. It was thus shown that through using a combination of mitigation techniques, it is possible to develop an optimal design with a high level of resistance against Single Event Upsets, utilizing a smaller footprint than implementing Triple Modular Redundancy. / AFRIKAANSE OPSOMMING: Sub-stelsel kommunikasie vorm die basis van die funksionaliteit in ’n komplekse elektroniese stelsel soos ’n satelliet. Dit skep die vermoë om veelvoudige verwerkers gelyktydig te laat funksioneer en inligting tussen hulle te deel. Sonder sub-stelsel kommunikasie, sal ’n enkele verwerker die hele sateliet moet beheer. Dit sal nie net die hele ontwerp oorkompliseer nie, maar die verwerker sal ook nie genoeg kapisteit hê om al die komponente effektief te diens nie. Die newe-effekte van bestraling op geïntegreerde stroombane is goed gedokumenteer en kan wissel van ’n enkele omgekeerde bis, tot die vernietiging van die geïntegreerde stroombaan. Indien die fout in die kommunikasiestelsel nie herstel word nie, kan dit lei tot die verlies van die hele sateliet. Die doel is om ’n meer bestraling bestande Controller-Area-Network (CAN) nodus te skep. Aangesien ’n volle drie-dubbele-modulêre-oortollige ontwerp ’n baie groot area beslaan en hoë krag verbruik het, gaan ’n kombinasie van versagting tegnieke toegepas en ge-evalueer word. Die doel is om beter area benutting as die drie-dubble-modulêre-oortollige ontwerp te kry, terwyl ’n goeie weerstand teen foute behoue bly. Deur middel van simulasies is voldoende bewyse gelewer dat die implimentasie van die individuele versagting tegnieke soos verwag funktioneer. Hierdie tegnieke sluit in, fout opsporing en regstelling deur middel van Hamming kodes, enkele geval oorgangs verskynsel filter asook drie-dubbele-modulêre-oortollige ontwerp. Nadat versagting meganismes toegepas is, het die area verbruik van die CAN beheerder toegeneem met slegs 116%. Simulasies het bewys dat Fout Opsporing en Regstelling en Drie-Dubbele-Modulêre-Oortollige ontwerp tegnieke binne die CAN beheerder korrek funktioneer, terwyl die CAN beheerder self funktioneer soos dit oorspronklik gefunksioneer het. Deur middel van bestralingstoetse, is dit bewys dat die ontwerp meer bestand is teen foute geïnduseer deur bestraling as die onbeskermde CAN beheerder. Dit is dus bewys dat deur gebruik te maak van verskeie versagting tegnieke dit moontlik is om ’n optimale ontwerp te implimenteer, met ’n hoë weerstand teen foute, maar met ’n laer area verbruik as die van ’n Drie-dubbele-Modulêre-Oortollige ontwerp.
67

Software download over DoIP in Android

Lingfors, Anders January 2015 (has links)
The Android operating system, originally intended for smartphone devices, is now finding its way into cars and other vehicles. While the Android system already implements support for system updates, it is not suitable for use in the automotive domain. It is not compatible with modern automotive standards for diagnostic communication such as ISO 14229: Unified Diagnostic Services (UDS). This means that new tools, procedures and software would be needed to allow an Android device to be updated by a service technician in a repair shop or on the field. A better approach would be to add support for automotive diagnostic communication in Android. This way, the tools and supporting infrastructure that already exist can still be used. We have developed a solution for diagnostic communication on Android that is both modular and compatible with existing automotive standards. By using the standard ISO 13400: Diagnostic communication over Internet Protocol (DoIP), this solution enables both updating the system software on the Android device itself, as well as diagnostic communication with the ECUs on the vehicle’s internal CAN network. Thus, an existing diagnostic port based on a slower communication protocol such as CAN or J1587 could theoretically be replaced completely by the Android device’s Ethernet port. Finally, we have evaluated the performance of our implementation under various settings and conditions. These include varying the maximum size of a diagnostic message, different network settings, downloading software over a Wi-Fi link, and downloading data to multiple devices simultaneously. / Operativsystemet Android, ursprungligen avsett för smartphone-enheter, återfinns numera även i bilar och andra typer av fordon. Även om Android-systemet redan implementerar stöd för system-uppdateringar, är det inte lämpligt att använda i fordonsindustrin. Den är inte kompatibel med moderna fordons-standarder för diagnoskommunikation som t.ex. ISO:14229: Enhetliga diagnostiktjänster (UDS). Detta innebär att det skulle krävas nya verktyg, procedurer och mjukvara för att möjliggöra att en Android-enhet uppdaterades av en service-tekniker i verkstad eller i fält. Ett bättre tillvägagångssätt skulle vara att lägga till support för diagnoskommunikation i Android. På detta sätt skulle redan existerande verktyg och stödjande infrastruktur kunna fortsätta användas. Vi har utvecklat en lösning för diagnoskommunikation i Android som är både modulär och kompatibel med existerande fordonsstandarder. Genom att använda ISO 13400: Diagnostikkommunikation över Internet-protokoll (DoIP) möjliggör denna lösning både uppdatering av systemmjukvaran i själva Android-enheten, samt diagnoskommunikation med övriga styrenheter på fordonets interna CAN-nätverk. Därmed skulle en befintlig diagnosport baserad på ett långsammare kommunikationsprotokoll såsom CAN eller J1587 teoretiskt kunna ersättas helt och hållet med Android-enhetens Ethernet-port. Slutligen har vi testat vår implementations prestanda under varierande inställningar och förhållanden. Dessa inkluderar bland annat att variera den maximala storleken av ett diagnos-meddelande, olika nätverks-inställningar, att uppdatera mjukvaran över en Wi-Fi-länk, samt att uppdatera mjukvaran på flera enheter samtidigt.
68

PROACTIVE VULNERABILITY IDENTIFICATION AND DEFENSE CONSTRUCTION -- THE CASE FOR CAN

Khaled Serag Alsharif (8384187) 25 July 2023 (has links)
<p>The progressive integration of microcontrollers into various domains has transformed traditional mechanical systems into modern cyber-physical systems. However, the beginning of this transformation predated the era of hyper-interconnectedness that characterizes our contemporary world. As such, the principles and visions guiding the design choices of this transformation had not accounted for many of today's security challenges. Many designers had envisioned their systems to operate in an air-gapped-like fashion where few security threats loom. However, with the hyper-connectivity of today's world, many CPS find themselves in uncharted territory for which they are unprepared.</p> <p><br></p> <p>An example of this evolution is the Controller Area Network (CAN). CAN emerged during the transformation of many mechanical systems into cyber-physical systems as a pivotal communication standard, reducing vehicle wiring and enabling efficient data exchange. CAN's features, including noise resistance, decentralization, error handling, and fault confinement mechanisms, made it a widely adopted communication medium not only in transportation but also in diverse applications such as factories, elevators, medical equipment, avionic systems, and naval applications.</p> <p><br></p> <p>The increasing connectivity of modern vehicles through CD players, USB sticks, Bluetooth, and WiFi access has exposed CAN systems to unprecedented security challenges and highlighted the need to bolster their security posture. This dissertation addresses the urgent need to enhance the security of modern cyber-physical systems in the face of emerging threats by proposing a proactive vulnerability identification and defense construction approach and applying it to CAN as a lucid case study. By adopting this proactive approach, vulnerabilities can be systematically identified, and robust defense mechanisms can be constructed to safeguard the resilience of CAN systems.</p> <p><br></p> <p>We focus on developing vulnerability scanning techniques and innovative defense system designs tailored for CAN systems. By systematically identifying vulnerabilities before they are discovered and exploited by external actors, we minimize the risks associated with cyber-attacks, ensuring the longevity and reliability of CAN systems. Furthermore, the defense mechanisms proposed in this research overcome the limitations of existing solutions, providing holistic protection against CAN threats while considering its performance requirements and operational conditions.</p> <p><br></p> <p>It is important to emphasize that while this dissertation focuses on CAN, the techniques and rationale used here could be replicated to secure other cyber-physical systems. Specifically, due to CAN's presence in many cyber-physical systems, it shares many performance and security challenges with those systems, which makes most of the techniques and approaches used here easily transferrable to them. By accentuating the importance of proactive security, this research endeavors to establish a foundational approach to cyber-physical systems security and resiliency. It recognizes the evolving nature of cyber-physical systems and the specific security challenges facing each system in today's hyper-connected world and hence focuses on a single case study. </p>
69

Network Traffic Regulator for Diagnostic Messages in Modular Product / Reglering av nätverkstrafik för diagnoskommunikation i en modulär produkt

Thakrar, Nikhil January 2017 (has links)
The aim of this thesis project is to explore a network traffic regulator using bandwidth management techniques that regulates data traffic with the objective to use the network bandwidth to its maximum capacity while ensuring that the network is not overloaded. The bandwidth in the existing network architecture is shared between two co-existing, distinct data flows for on-board communication and diagnostic communication in an in-vehicle network. The diagnostic communication must not interfere with the more critical on-board communication and it should comply with the remaining bandwidth. In the existing solution, fixed delays are imposed on the data traffic which result in a waste of network capacity. The approach presented in this thesis uses two regulation algorithms for different types of diagnostic services. One regulation algorithm is activated for diagnostic services that require data segmentation and multiple data frames to accommodate the transferred data. This algorithm makes use of the Flow Control parameter Separation Time specified in ISO 15765-1:2011 "Road vehicles -- Diagnostic communication over Controller Area Network (DoCAN)". The other algorithm regulates diagnostic services that generate bursts of single frames where data segmentation is not required and it does so using traffic shaping techniques. The results in this thesis show that the network traffic indeed can be regulated for different diagnostic services by using the two mentioned regulation algorithms. The results also show that data is not lost due to high network utilisation and that the bandwidth is used to its maximum capacity without having to impose fixed delays on the network system. The regulator is adaptive in the sense that it can be used for different vehicle configurations with compatible network systems to ensure quality of service and a robust network system. / I detta examensarbete är målet att utforska en metod för att reglera  nätverkstrafik genom att använda tekniker inom bandbreddshantering  med syfte att utnyttja bandbredden till dess maximala kapacitet utan att överbelasta nätverket. Bandbredden i den nuvarande nätverksarkitekturen delas mellan två dataflöden för onboard kommunikation och diagnostisk kommunikation. Den diagnostiska kommunikationen får inte på någotvis störa onboard kommunkationen och får anpassa sig till den bandbredd som kvarstår. I det existerande systemet införs fixa fördröjningar i nätverkstrafiken vilket medför ett onödigt slöseri på nätverkskapaciteten och som också medför att de diagnostiska tjänsterna tar längre tid att utföra.  Tillvägagångssättet som presenteras i detta arbete använder två regleringsalgoritmer för olika typer av diagnostiska tjänster. En algoritm används för tjänster som kräver datasegmentering och flera dataramar för att skicka data. Den här algoritmen använder parametern Separation Time som är specificerad i ISO standarden 15765-1:2011 "Road vehicles -- Diagnostic communication over Controller Area Network (DoCAN)". Diagnostiska tjänster som istället genererar en skur av enstaka dataramar regleras med en traffic shaping algoritm som heter Token Bucket. Resultaten i detta arbete visar att det går att reglera nätverkstrafiken för olika typer av diagnostiska tjänster genom att använda de två utvecklade algoritmerna. Resultaten visar också att data inte går förlorat vid höga nätverkslaster och att bandbredden används maximalt utan att behöva införa fixa fördröjningar i nätverkssystemet. Regleraren är adaptiv i bemärkelsen att den kan användas för alla tänkbara fordonskonfigurationer med kompatibelt nätverkssystem för att försäkra quality of service och robusthet.
70

Sistemas de comunicação CAN FD: modelamento por software e análise temporal. / CAN FD communication systems: modeling software and temporal analysis.

Andrade, Ricardo de 26 September 2014 (has links)
O CAN (Controller Area Network) é um padrão no barramento de comunicação, amplamente difundido em aplicações industriais, particularmente em sistemas automotivos. Atualmente, um dos principais problemas no ramo automotivo é que esse barramento está com muitas mensagens no barramento, resultado da incorporação incremental de sistemas eletrônicos em automóveis, visto que há uma exigência maior de conectividade devido às exigências da sociedade e mercado. Como alternativa, vem sendo desenvolvida uma nova rede de comunicação, conhecida como CAN with Flexible Data-Rate (CAN-FD), que é um barramento com velocidade de transmissão de informação mais alta e maior capacidade de transporte de dados. Este projeto tem por objetivo principal explorar as funcionalidades da rede CAN-FD, através de simulações do trânsito de mensagens numa rede CAN-FD usando os dados de uma rede real CAN, e verificando a previsibilidade de ambas no âmbito de um protocolo que possa atender à demanda de sistemas complexos. A comparação é executada a partir de um conjunto de mensagens adicionadas na rede, para verificar os limites de transmissão de cada uma das redes, e os respectivos tempos de atraso das mensagens. Como um segundo estudo de caso, uma rede de controle em malha fechada foi desenvolvida, conectada a um barramento CAN e um barramento CAN-FD. Essa técnica de controle permitiu eliminar os ruídos que interferem no controle, e checar o limite em que o protocolo de comunicação consegue manter em uma malha de controle funcionando. Os resultados mostraram que é possível transmitir uma imensa quantidade de dados com o menor uso do busload (quantidade de mensagens transmitidas) no veículo através do uso do barramento CAN-FD, porém ainda não foi lançado no mercado um controlador do CAN-FD para realizar essa tarefa. Por outro lado, os dois protocolos, CAN-FD e CAN, tem suas previsibilidades comprometidas pois não conseguem enviar a mensagem quando o barramento está superior a 98,86% de carga. / The CAN (Controller Area Network) is a standard in the communication bus, widespread in industrial applications, particularly in automotive systems. Currently, one of the main problems in the automotive industry is that this bus is with many messages on the bus, the result of incremental incorporation of electronic systems in automobiles, since there is a greater demand for connectivity due to the demands of society and the market. Alternatively, it has been developed a new communications network, known as CAN with Flexible Data-Rate (CAN-FD), which is a bus with transmission speeds higher and higher capacity data transport information. This project\'s main objective is to explore the features of the network CAN-FD, through simulations of the traffic of messages on a CAN network FD using data from a real CAN network, and verifying the predictability both in the context of a protocol that can meet the demand complex systems. The comparison is performed from a set of messages added to the network to verify the boundaries of each of the transmission networks and the respective delay times of the messages. As a second case study, a network of closed-loop control was developed, connected to a CAN bus and CAN bus FD. This control technique has eliminated the noises that interfere with the control and check the extent that the communication protocol can keep a control loop running. The results showed that it is possible to transmit a huge amount of data with the lowest usage busload (amount of transmitted messages) to the vehicle through the use of CAN bus FD, but not yet released to market a CAN controller FD to accomplish this task . Moreover, both protocols, CAN-FD and CAN has its predictability compromised because they are unable to send the message when the bus is more than 98.86% load.

Page generated in 0.0996 seconds