• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 4
  • 2
  • Tagged with
  • 39
  • 39
  • 10
  • 9
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of seed oil melting points of multiple species at a common latitude

Meadows, Scott Alan 09 November 2012 (has links)
Similar forces of selection operating on multiple taxa can cause convergent evolution of quantitative traits. When those same forces of selection occur across an environmental gradient a phenotypic cline may evolve. I have conducted an experiment in central Texas to test whether seed oil melting points and proportions of saturated fatty acids have repeatedly evolved to germinate as predicted by theory. Species with lower seed oil melting points and proportions of saturated fatty acids are expected to germinate at cooler temperatures than ones that germinate at warmer temperatures. Field observations were conducted at two sites for one year to characterize germination temperatures of sixteen species. Gas chromatography was utilized to describe the fatty acid compositions and melting points of those species’ triacylglycerol (oil) stores. The field sites produced conflicting results. At one site, all analyses supported the theory. Whereas evidence from the other site either contradicted expectation or was equivocal. Likewise there was some evidence that plants with annual life histories are under stronger selection to evolve melting points that approximate germination temperature than species with perennial life histories. Finally, evidence was found that a higher level of variation in seed oil melting point and percent of saturated fatty acids is maintained in species that were observed to germinate at low temperatures relative to species observed to germinate at higher temperatures. / text
2

Developmental and Genetic Mechanisms of Ovariole Number Evolution in Drosophila

Green, Delbert Andre 06 June 2014 (has links)
The goal of the "Quantitative Trait Gene" (QTG) program is to identify genes and mutations that underlie natural phenotypic variation. My goal with this work was to contribute an additional model to the program: ovariole number evolution in Drosophila. In this thesis I describe the progress I have made towards identifying a specific genetic change that contributed to the divergence of ovariole number between two Drosophila lineages. I identify specific developmental mechanisms relevant to establishing ovariole number in different Drosophila lineages by detailing ovarian cell-type specific specification, proliferation, and differentiation. I test specific candidates of genetic regulators of these developmental mechanisms with mutational analysis in D. melanogaster. I show that independent evolution of ovariole number has resulted from changes in distinct developmental mechanisms, each of which may have a different underlying genetic basis in Drosophila. I use the interspecies comparison of D. melanogaster versus D. sechellia to test for functional differences in insulin/insulin-like growth factor (IIS) signaling between the two species. I show that IIS activity levels and sensitivity have diverged between species, leading to both species-specific ovariole number and species-specific nutritional plasticity in ovariole number. Moreover, plastic range of ovariole number correlates with ecological niche, suggesting that the degree of nutritional plasticity may be an adaptive trait. My work and quantitative genetic analyses strongly support the hypothesis that evolution of the Drosophila insulin-like receptor (InR) gene, specifically, is at least partially responsible for the divergence in ovariole number and nutritional plasticity of ovariole number between D. melanogaster and D. sechellia. I detail ongoing experiments to test this hypothesis explicitly via cross-species transgenesis.
3

Evolution Revolution

Vice President Research, Office of the 11 1900 (has links)
His world is full of organisms with no names. Brian Leander is working to discover and characterize the diversity of life on Earth.
4

Conifer Evolution, from Demography and Local Adaptation to Evolutionary Rates : Examples from the Picea genus

Chen, Jun January 2012 (has links)
Evolutionary process can be inferred at three different levels: the species level, the population level and the molecular level. In this thesis, I applied approaches at these three levels and aimed to get a comprehensive picture of conifer evolution, from speciation and demography to geographic variation and local adaptation, and then to the molecular evolution of proteins and small regulatory RNAs. Spruce species have been observed to possess a large number of trans-species shared polymorphisms. Using an “Isolation with migration” model, we found that the large effective population size of spruce retained these shared polymorphisms, inheriting them from the common ancestor. Post-divergence gene flow only existed between Picea abies and P. glauca, and between P. wilsonii and P. schrenkiana. The combination of Tajima’s D and Fay & Wu’s H at most of loci suggested an ancient and severe bottleneck for most species except P. breweriana. Furthermore, I investigated the effect of local selection in two parallel clines, which is one of the major forces that can cause divergence or even speciation. The timing of bud set and growth cessation was found correlated with latitude in populations of P. abies and P. obovata. Using allele frequency spectrum analyses we identified three genes under local selection in both species including two circadian-clock genes GI and PRR7, and one photoperiodic gene FTL2. This indicated that parallel evolution could occur through groups of genes within related pathways. Clinal variation at expression level provided stronger evidence of selection in FTL2, which has previously been associated with bud set in P. abies. Finally we focused on the molecular evolution of mRNA and small regulatory RNAs in P. abies. With the help of Next-Generation sequencing, we have achieved in spruce the first de novel assembly of the needle transcriptome and a preliminary characterization of sRNA populations. Along with features common in plants, spruce also exhibited novelties in many aspects including lower substitution rate and protein evolutionary rate, dominance of 21-nt sRNA, and a large proportion of TIR-NBS-LRR genes as sRNA sources and targets.
5

Associações ecológicas e evolutivas da forma da cabeça em lagartos serpentiformes (Squamata) / Ecological and evolutionary head shape associations in serpentiform lizards (Squamata)

Anelli, Vinicius 09 April 2019 (has links)
Convergências são frequentes na evolução da diversidade dos seres vivos. Padrões fenotípicos parecidos originados a partir de processos evolutivos independentes são interpretados como evidência da força da seleção natural na diversificação da vida. Corpos alongados e com apêndices locomotores reduzidos (i.e. serpentiformes) são frequentes e evoluíram em múltiplas linhagens de vertebrados. Ao menos 25 origens independentes do fenótipo serpentiforme são reconhecidas em Squamata, frequentemente associadas ao hábito fossorial. Explicações para essa frequente associação residem nas predições energéticas e biomecânicas envolvidas com o deslocamento por enterramento. A cabeça possui papel funcional relevante envolvido com a perfuração do substrato durante o deslocamento fossorial. Associação evolutiva entre a forma da cabeça e a fossorialidade foi descrita para a família de lagartos Gymnophthalmidae, mas generalizada para as duas linhagens serpentiformes independentes do grupo. No presente trabalho, morfometria geométrica de contorno foi implementada para testar a hipótese de que a forma da cabeça varia entre os representantes fossoriais de lagartos gimnoftalmídeos. Verificou-se que variações morfológicas são dependentes do tipo de substrato de enterramento, com espécies fossoriais que ocupam substratos arenosos apresentando cabeças mais pontiagudas e menores, diferindo significativamente de espécies que se deslocam em meio ao folhiço, com formatos mais arredondadas. O presente estudo também testou associações entre diferentes regimes de seleção e a evolução de fenótipos serpentiformes a partir de uma base de dados morfológicos e ecológicos abrangendo 198 espécies de todas as grandes linhagens de lagartos viventes. Os resultados indicam que a forma da cabeça evoluiu em associação ao hábito locomotor e ao microhabitat, com espécies fossoriais apresentando ótimos adaptativos distintos envolvidos com o tipo de solo no qual o enterramento ocorre, explicados pelas diferentes demandas seletivas impostas por distintos substratos. Os avanços detalhados neste trabalho contribuem para esclarecer como padrões convergentes evoluíram nos répteis escamados, revelando significativa diversidade quanto à forma da cabeça associada ao uso do microhabitat em espécies fossoriais / Convergence is ubiquitous to the striking diversity of life. Similar phenotypes originated by independent evolutionary processes are interpreted as evidence for the strength of natural selection. Elongated limb-reduced bodies are frequent and evolved multiple times among vertebrates. At least twenty-five independent origins of snakelike phenotypes are recognized for Squamata, frequently associated to fossorial environments. Explanations for the frequent occurrence of elongated limbless forms in association to fossoriality reside in the functional and biomechanical predictions of such phenotype for burrowing. Head plays an important functional role in excavating the soil during head-first burrowing. Evolutionary associations between skull shape and fossoriality were described for Gymnophthalmidae lizards, although patterns were generalized for both independent origins of snakelike, fossorial forms in the family. In our study, outline geometric morphometric was implemented in order to test the hypothesis that head shape varies among fossorial gymnophthalmids. Our findings indicate that such variations are substrate-dependent in Gymnophthalmidae, as sandswimmer gymnophthalmids exhibit smaller, narrow-snouted heads, whereas leaf-litter dwellers differ in head shape patterns, with rounded heads. Our study also tested associations between distinct selective regimes and the evolution of snakelike phenotypes for lizards in general, as from an ecomorphological database comprising 198 species from all continents, representing all the major lizard lineages recognized. Results indicate that skull shape evolved in association to locomotion and to microhabitat, as fossorial species evolve towards distinct adaptive optima according to the burrowing substrate, since head is in direct contact with soil during locomotion and subject to distinct selective demands imposed by substrate specificities. The advances described in our study contribute to clarify how convergent patterns evolve among squamates, unveiling considerable diversity in head shape associated to microhabitat use in fossorial species
6

Are changes at ARP and KNOX genes responsible for the evolution of leaf form in Begonia section Gireoudia?

Umbreen, Saima January 2011 (has links)
Leaf primordia initiation takes place at the flanks of SAM and then passes through common developmental stages. Very different final leaf shapes and sizes result from varying the timing and further patterning events within these developmental stages. Similar final leaf shapes may also result from very distinct early events. Begonia section Gireoudia is a recently radiated group of species with highly divergent leaf forms. I have used a classical genetic approach and candidate gene approach to explain the evolution of leaf form in this genus. These results suggest that convergent evolution of peltate leaves may be through changes at different loci. Key developmental regulators KNOX and ARP genes are reported to be involved in the evolution of leaf form in different species. I have shown that in at least one species ARP is linked to the evolution of peltate leaf form. In a second species there is no link between STM-like KNOX genes and leaf dissection. Estimates of the rate of evolution of ARP CDS showed that different domains of the genes are under different selection pressures. Myb domain2 of ARP genes is under positive selection and variable between two copies of ARP genes in Begonia. Results of complementation tests with Begonia ARP genes in Arabidopsis show that ARPs from Begonia are functionally equivalent to Arabidopsis AS1 genes and one of the two ARP genes in Begonia may be a dominant negative. Expression analysis based on insitu hybridization in compound, peltate and simple leaved Begonias is described. There is no variation in expression patterns between peltate, non peltate or compound leaved Begonia species for BARP1 and KNB1 genes.
7

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Silva, Marcos Araújo Castro e 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
8

Reading the Book of Life: Contingency and Convergence in Macroevolution

Powell, Russell 01 January 2008 (has links)
<p>This dissertation explores philosophical problems in biology, particularly those relating to macroevolutionary theory. It is comprised of a series of three papers drawn from work that is currently at the publication, re-submission, and review stage of the journal refereeing process, respectively. The first two chapters concern the overarching contours of complex life, while the third zeroes in on the short and long-term prospects of human evolution.</p><p>The rhetorical journey begins with a thought experiment proposed by the late paleontologist Stephen Jay Gould. Gould hypothesized that replaying the "tape of life" would result in radically different evolutionary outcomes, both with respect to animal life in general and the human species in particular. Increasingly, however, biologists and philosophers are pointing to convergent evolution as evidence for replicability and predictability in macroevolution. Chapters 1 and 2 are dedicated to fleshing out the Gouldian view of life and its antithesis, clarifying core concepts of the debate (including contingency, convergence, constraint and causation), and interpreting the empirical data in light of these conceptual clarifications. Chapter 3 examines the evolutionary biological future of the human species, and the ways in which powerful new biotechnologies can shape it, for better and for worse. More detailed chapter summaries are provided below.</p><p>In Chapter 1, I critique a book-length excoriation of Gould's contingency theory written by the paleobiologist Simon Conway Morris, in which he amasses and marshals a good bulk of the homoplasy literature in the service of promoting a more robust, counter-factually stable account of macroevolution. I show that there are serious conceptual and empirical difficulties that arise in broadly appealing to the frequency of homoplasy as evidence for robustness in the history of life. Most important is Conway Morris's failure to distinguish between convergent (`externally' constrained) and parallel (`internally' constrained) evolution, and to consider the respective implications of these significantly different sources of homoplasy for a strong adaptationist view of life.</p><p>In so doing, I propose a new definition of parallel evolution, one intended to rebut the common charge that parallelism differs from convergence merely in degree and not in kind. I argue that although organisms sharing a homoplastic trait will also share varying degrees of homology (given common decent), it is the underlying developmental homology with respect to the generators directly causally responsible for the homoplastic event that defines parallel evolution and non-arbitrarily distinguishes it from convergence. I make use of the philosophical concept of `screening-off' in order to distinguish the proximate generators of a homoplastic trait from its more distal genetic causes (such as conserved master control genes).</p><p>In Chapter 2, I critically examine a recent assessment of the contingency debate by the philosopher John Beatty, in which he offers an interpretation of Gould's thesis and argues that it is undermined by iterative ecomorphological evolution. I develop and defend alternative concepts of contingency and convergence, and show how much of the evidence generally held to negate the contingency thesis not only fails to do so, but in fact militates in favor of the Gouldian view of life. My argument once again rests heavily on the distinction between parallelism and convergence, which I elaborate on and defend against a recent assault by developmental biologists, in part by recourse to philosophical work on the ontological prioritization of biological causes.</p><p>In Chapter 3, I explore the probable (and improbable) evolutionary biological consequences of intentional germ-line modification, particularly in relation to human beings. A common worry about genetic engineering is that it will reduce the pool of genetic diversity, creating a biological monoculture that could not only increase our susceptibility to disease, but even hasten the extinction of our species. Thus far, however, the evolutionary implications of human genetic modification have remained largely unexplored. In this Chapter, I consider whether the widespread use of genetic engineering technology is likely to narrow the present range of genetic variation, and if so, whether this would in fact lead to the evolutionary harms that some authors envision. By examining the nature of biological variation and its relation to population immunity and evolvability, I show that not only will genetic engineering have a negligible impact on human genetic diversity, but that it will be more likely to ensure rather than undermine the health and longevity of the human species. To this end, I analyze the relationship between genotypic and phenotypic variation, consider process asymmetries between micro and macroevolution, and investigate the relevance of evolvability to clade-level persistence and extinction.</p> / Dissertation
9

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Marcos Araújo Castro e Silva 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
10

Convergent Evolution of Darkly Pigmented Skin in Island Melanesian Populations

Bowser, Lauren K. January 2017 (has links)
No description available.

Page generated in 0.1384 seconds