• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 48
  • 46
  • 36
  • 13
  • 12
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

High Frequency Isolated Single-Stage Integrated Resonant AC-DC Converters for PMSG Based Wind Energy Conversion Systems

Du, Yimian 06 January 2014 (has links)
In this dissertation, two high-frequency (HF) transformer isolated single-stage integrated ac-dc converters are proposed for a small scale permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS). These two types of single-stage integrated ac-dc converters include expected functions of HF isolation, power factor correction (PFC), and output regulation in one single-stage. Fixed-frequency phase-shift control and soft-switching operation are employed in both proposed ac-dc converters. After reviewing the literature and discussing pros and cons of the existing topologies, it is preferred that three identical single-phase single-stage integrated converters with interleaved connection configuration are suitable for the PMSG. For the single-phase converter, two new HF isolated single-stage integrated resonant ac-dc converters with fixed-frequency phase-shift control are proposed. The first proposed circuit is HF isolated single-stage integrated secondary-side controlled ac-dc converter. The other proposed circuit is HF isolated single-stage dual-tank LCL-type series resonant ac-dc converter, which brings better solutions compared to the first converter, such as high power factor and low total harmonic distortion (THD) at the ac input side. Approximate analysis approach and Fourier series methods are used to analyze these two proposed converters. Design examples for each one are given and designed converters are simulated using PSIM simulation package. Two experimental circuits are also built to verify the analysis and simulation. The simulated and experimental results reasonably match the theoretical analysis. Then the proposed HF isolated dual-tank LCL-type series resonant ac-dc converter is used for three-phase interleaved connection in order to satisfy requirements of PMSG based WECS. A design example for this three-phase interleaved configuration is given and simulated for validation under several operating conditions. / Graduate / 0544 / duyimian@uvic.ca
42

Estudo e desenvolvimento experimental de um sistema eÃlico interligado a rede elÃtrica / Study and experimental development of the a grid connected wind power system

Carlos Elmano de Alencar e Silva 07 February 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Este trabalho apresenta o estudo e desenvolvimento de um sistema eletrÃnico de aproveitamento de energia eÃlica a partir de um gerador sÃncrono de Ãmà permanente conectado a uma turbina de vento. O sistema opera com velocidade variÃvel, permitindo o mÃximo aproveitamento da energia cinÃtica incidente na turbina de vento. Essa energia cinÃtica à convertida em energia elÃtrica pelo gerador sÃncrono de Ãmà permanente e depois de totalmente condicionada, injetada na rede elÃtrica convencional. Esse condicionamento à feito por um sistema eletrÃnico objeto de estudo e desenvolvimento deste trabalho, o qual consiste em um retificador trifÃsico interligado a um inversor monofÃsico em ponte completa com saÃda em corrente. SÃo apresentadas a revisÃo bibliogrÃfica de sistemas de aproveitamento de energia eÃlica para geraÃÃo de energia elÃtrica pertinentes ao escopo do trabalho, a anÃlise do estÃgio retificador (potÃncia e controle), a anÃlise do estÃgio inversor (potÃncia e controle), uma comparaÃÃo teÃrica de rendimento entre o retificador trifÃsico proposto neste trabalho (bridgeless trifÃsico) e o retificador trifÃsico dois nÃveis, e os resultados experimentais de um protÃtipo de validaÃÃo de 5kW do sistema proposto. / This work presents the study and development of an electronic system for wind energy exploitation from a permanent magnet synchronous generator connected to a wind turbine. The system operates with variable speed, allowing maximum use of the kinetic energy incident on the wind turbine. This kinetic energy is converted into electrical energy by the permanent magnet synchronous generator and, after being fully conditioned, injected into the conventional power grid. This conditioning is done by an electronic system object of study and development of this work, which consists of a rectifier connected to a single-phase full-bridge inverter with current output. Are presented the literature review of the relevant wind energy conversion systems to the scope of work, the analysis of the rectifier stage (power and control), the analysis of the inverter stage (power and control), a efficiency theoretical comparison between the proposed rectifier (three-phase bridgeless) and the three-phase fullbridge rectifier, and the experimental results of an 5kW validation prototype of the proposed system.
43

Análise de viabilidade técnica, econômica, ambiental e mercadológica da instalação original de fábrica de sistema de conversão para uso de gás natural em veículos leves movidos a gasolina e/ou álcool. / Technical, economical, environmental and merchandizing practicability analysis of original assemblers installation of conversion system to the use of compressed natural gas in gasohol and / or ethanol impelled light vehicles.

Daniel Valiante 14 November 2006 (has links)
É cada vez maior a busca por fontes de energia alternativas com vistas à substituição dos derivados do Petróleo, em especial após a crise da década de 70. A indústria automotiva segue a mesma tendência, buscando alternativas viáveis frente à incerteza do tempo e quantidade que ainda resta de estoque de combustíveis fósseis líquidos. Além do Álcool como meio de substituição ao Diesel e a Gasolina, a utilização de GNV - Gás Natural Veicular - está entre as tecnologias atualmente consideradas viáveis e eficientes. Segundo a ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (2006), o Brasil possui reservas comprovadas de 306,4 x 109 m3 de Gás Natural, quantidade estimada para abastecer o mercado nacional, no cenário mais pessimista, pelos próximos cinqüenta anos. A associação desses fatores resulta na busca do consumidor brasileiro pela redução dos gastos cada vez maiores com combustível e no aumento da demanda por veículos movidos a Gás Natural. Apesar da notória demanda de mercado, atualmente existem no Brasil poucas opções de veículos leves com Sistemas de Conversão originalmente instalados pelas montadoras e com manutenção da garantia de fábrica. A falta de opções de oferta abre espaço para o grande aumento do número de oficinas de conversão, freqüentemente ignorando aspectos técnicos e de legislação de conversão, na intenção de apenas obterem lucros com o aumento de demanda. Mais do que pretensiosas conclusões definitivas, o presente trabalho tem como objetivo oferecer uma pequena contribuição à indústria e à sociedade, através da análise da viabilidade técnica, econômica, ambiental e mercadológica da instalação original de fábrica de Sistema de Conversão para uso de Gás Natural em veículos leves movidos a Gasolina e / ou Álcool, frente ao atual mercado de veículos convertidos e ao aumento da demanda por fontes de energia alternativa. / The search for alternative energy sources aiming the substitution of derivate Oil products is each time higher, especially after the 70s Petroleum crisis. The automotive industry follows this trend too, looking for possible alternatives in face of the uncertainness of time and quantity available stocks of liquid fossil fuels. Besides the Ethanol as a way of Gasohol and Diesel substitution, the CNG - Compressed Natural Gas - use is nowadays considered one of the most possible and efficient technologies. According to the ANP - National Petroleum, Natural Gas and Biofuel Agency (2006), Brazil owns 306,4 x 109 m3 of Compressed Natural Gas proved reserves, which are considered enough to supply the national market, in the worst case, for the next fifty years. The conjunction of these issues results in the Brazilian customers search for the each higher fuel expenses reduction and the raise of Compressed Natural Gas impelled vehicles demand. Despite the notorious market demand, there are nowadays on Brazil only a few options of light vehicles with Conversion System originally installed by automotive assemblers and warrantys maintenance. This lack of supply options creates a large field to the raise in the quantity of conversion workshops, frequently ignoring the technical aspects and the conversion legislation only with intent of achieving profit with the demand raise. More than pretentious definitive conclusions, the present work aims to offer a small contribution to the industry and society through the technical, economical, environmental and merchandizing practicability analysis of original assemblers installation of Conversion System to the use of Compressed Natural Gas in Gasohol and / or Ethanol impelled light vehicles, in face of the actual converted vehicles market and the demand raise for alternative energy sources.
44

Wind energy and power system interconnection, control, and operation for high penetration of wind power

Liang, Jiaqi 08 March 2012 (has links)
High penetration of wind energy requires innovations in different areas of power engineering. Methods for improving wind energy and power system interconnection, control, and operation are proposed in this dissertation. A feed-forward transient compensation control scheme is proposed to enhance the low-voltage ride-through capability of wind turbines equipped with doubly fed induction generators. Stator-voltage transient compensation terms are introduced to suppress rotor-current overshoots and torque ripples during grid faults. A dynamic stochastic optimal power flow control scheme is proposed to optimally reroute real-time active and reactive power flow in the presence of high variability and uncertainty. The performance of the proposed power flow control scheme is demonstrated in test power systems with large wind plants. A combined energy-and-reserve wind market scheme is proposed to reduce wind production uncertainty. Variable wind reserve products are created to absorb part of the wind production variation. These fast wind reserve products can then be used to regulate system frequency and improve system security.
45

Advances in power system small signal stability analysis considering load modeling and emerging generation resource

Yateendra Mishra Unknown Date (has links)
With the increasing complexity of the power system, electromechanical oscillations are becoming one of the major problem. Several blackouts have been reported in the past due to insufficient damping of the oscillatory modes. The starting point to avoid catastrophic behaviors would be to simulate actual power system and study the response of the system under various outages leading to blackouts. Recently, it has been identified that appropriate modeling of the load is necessary to match the actual system behavior with the computer simulated response. This research throws some insight into the detailed load modeling and its impact on the system small signal stability. In particular, Composite load model is proposed and its effect on the system small signal stability is investigated. Modeling all the loads in a large power system would be a cumbersome job and hence the method for identifying the most sensitive load location is also proposed in the thesis. The effect of load modeling on the eigenvalue movement is also investigated. The low damped electromechanical modes are always undesirable in the large inter-connected power systems as they might get excited under some event leading to growing oscillations. Proper damping of these modes is essential for effective and reliable system operation. Power system stabilizers have been proved to be an effective way of damping these electromechanical modes. The optimal number and location of PSS to effectively damp the modes via improved Differential algorithm is proposed. Moreover, the effect of TCSC, series compensated FACTs device, on enhancing the system damping is investigated. A fixed order model matching technique is presented to design a damping controller for the TCSC. With the increasing global pressure for reducing carbon emissions, there is a great amount of interest in the renewable sources of energy, particularly Wind Energy Conversion Systems. Of all the present methods of wind generation systems, Doubly Fed Induction Generation (DFIG) based wind farms are gaining popularity. The comparison of various methods of wind generation techniques is presented. In particular, the impact of DFIG based wind farms on the system small signal stability is investigated in this work. Co-ordinated tuning of the controllers is performed using Bacterial Foraging Technique, which is another member of Evolutionary algorithms. Damping controller for the DFIG system is proposed to enhance the damping of the electromechanical modes. Results have proved the effectiveness of the control methodology. The contributions made in this thesis could be utilized to promote the further development of the damping controllers for large power systems.
46

Advances in power system small signal stability analysis considering load modeling and emerging generation resource

Yateendra Mishra Unknown Date (has links)
With the increasing complexity of the power system, electromechanical oscillations are becoming one of the major problem. Several blackouts have been reported in the past due to insufficient damping of the oscillatory modes. The starting point to avoid catastrophic behaviors would be to simulate actual power system and study the response of the system under various outages leading to blackouts. Recently, it has been identified that appropriate modeling of the load is necessary to match the actual system behavior with the computer simulated response. This research throws some insight into the detailed load modeling and its impact on the system small signal stability. In particular, Composite load model is proposed and its effect on the system small signal stability is investigated. Modeling all the loads in a large power system would be a cumbersome job and hence the method for identifying the most sensitive load location is also proposed in the thesis. The effect of load modeling on the eigenvalue movement is also investigated. The low damped electromechanical modes are always undesirable in the large inter-connected power systems as they might get excited under some event leading to growing oscillations. Proper damping of these modes is essential for effective and reliable system operation. Power system stabilizers have been proved to be an effective way of damping these electromechanical modes. The optimal number and location of PSS to effectively damp the modes via improved Differential algorithm is proposed. Moreover, the effect of TCSC, series compensated FACTs device, on enhancing the system damping is investigated. A fixed order model matching technique is presented to design a damping controller for the TCSC. With the increasing global pressure for reducing carbon emissions, there is a great amount of interest in the renewable sources of energy, particularly Wind Energy Conversion Systems. Of all the present methods of wind generation systems, Doubly Fed Induction Generation (DFIG) based wind farms are gaining popularity. The comparison of various methods of wind generation techniques is presented. In particular, the impact of DFIG based wind farms on the system small signal stability is investigated in this work. Co-ordinated tuning of the controllers is performed using Bacterial Foraging Technique, which is another member of Evolutionary algorithms. Damping controller for the DFIG system is proposed to enhance the damping of the electromechanical modes. Results have proved the effectiveness of the control methodology. The contributions made in this thesis could be utilized to promote the further development of the damping controllers for large power systems.
47

Modeling and Analysis of Grid Connected Variable Speed Wind Generators

Seshadri Sravan Kumar, V January 2015 (has links) (PDF)
The growing demand for power and increased environmental concerns gave an impetus to the growth of clean and renewable energy sources like wind, solar etc. There is a remarkable increase in the penetration of wind energy systems in the last decade and this trend is bound to increase at a much faster pace in future. This ever increasing penetration of wind power generating systems pose multi-fold challenges related to operational and stability aspects of the grid. Present day wind energy systems mostly comprise of variable speed wind generators. A large fraction of present day variable speed wind turbine generators use doubly fed induction machine (DFIM). This thesis deals with modeling and grid coordination aspects of variable speed wind gener- ators. In particular, the short coming of the existing steady state equivalent circuit of a DFIM is identified and subsequently, an accurate equivalent circuit of a DFIM is proposed. Relevant mathematical basis for the proposed model is presented. The proposed steady state equivalent circuit of a doubly fed induction machine is further validated using dynamic simulations of a standalone machine. Based on the proposed equivalent circuit, two approaches for computing the initial values of state variables of a DFIM is proposed. The first approach is a linear formulation where the losses due to resistance of the stator and rotor windings are neglected. The second approach is a non-linear formulation which takes the losses into consideration. Further, analysis is carried out on grid connected doubly fed induction generators (DFIG). A framework to incorporate DFIG based variable speed wind farms in the steady state power flow analysis is proposed. The proposed framework takes into consideration important aspects such as voltage dependent reactive power limits and mode of reactive power control of associated converters. Some of the challenges in a grid connected DFIG especially during su- persynchronous mode of operation are identified. The advantages of a non-Maximum Power Point Tracking (MPPT) mode of operation under certain operating conditions is highlighted. Finally, aspects pertaining to coordination of grid connected variable speed wind generators are studied. A trust region framework to determine the reference values to the control loops of converters in a variable speed wind generator is proposed. The proposed framework identifies the reference values considering other reactive power controllers in the grid. Moreover, the proposed framework ensures that the steady state voltage stability margin is maximized. On the computational front, trust region algorithms ensure global convergence. The mathematical models and initialization algorithms proposed in this thesis are tested on standalone systems under various control scenarios. The algorithms proposed to incorporate a grid connected DFIG in steady state analysis tools have been tested on a sample 6-bus system and a practical 418-bus equivalent system of Indian southern grid.
48

MODELING AND CONTROL OF HYDRAULIC WIND ENERGY TRANSFERS

Hamzehlouia, Sina 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The harvested energy of wind can be transferred to the generators either through a gearbox or through an intermediate medium such as hydraulic fluids. In this method, high-pressure hydraulic fluids are utilized to collect the energy of single or multiple wind turbines and transfer it to a central generation unit. In this unit, the mechanical energy of the hydraulic fluid is transformed into electric energy. The prime mover of hydraulic energy transfer unit, the wind turbine, experiences the intermittent characteristics of wind. This energy variation imposes fluctuations on generator outputs and drifts their angular velocity from desired frequencies. Nonlinearities exist in hydraulic wind power transfer and are originated from discrete elements such as check valves, proportional and directional valves, and leakage factors of hydraulic pumps and motors. A thorough understanding of hydraulic wind energy transfer system requires mathematical expression of the system. This can also be used to analyze, design, and predict the behavior of large-scale hydraulic-interconnected wind power plants. This thesis introduces the mathematical modeling and controls of the hydraulic wind energy transfer system. The obtained models of hydraulic energy transfer system are experimentally validated with the results from a prototype. This research is classified into three categories. 1) A complete mathematical model of the hydraulic energy transfer system is illustrated in both ordinary differential equations and state-space representation. 2) An experimental prototype of the energy transfer system is built and used to study the behavior of the system in different operating configurations, and 3) Controllers are designed to address the problems associated with the wind speed fluctuation and reference angular velocity tracking. The mathematical models of hydraulic energy transfer system are also validated with the simulation results from a SimHydraulics Toolbox of MATLAB/Simulink®. The models are also compared with the experimental data from the system prototype. The models provided in this thesis do consider the improved assessment of the hydraulic system operation and efficiency analysis for industrial level wind power application.
49

Electromechanics of an Ocean Current Turbine

Tzelepis, Vasileios 18 December 2015 (has links)
The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system.
50

Gestion de l'énergie d'une micro-centrale solaire thermodynamique / Energy management of a solar thermodynamic micro power plant

Rahmani, Mustapha Amine 04 December 2014 (has links)
Cette thèse s'inscrit dans le cadre du projet collaboratif MICROSOL, mené par Schneider Electric, et qui oeuvre pour le développement de micros centrales solaires thermodynamiques destinées à la production d'électricité en sites isolés (non connectés au réseau électrique) en exploitant l'énergie thermique du soleil. Le but de cette thèse étant le développement de lois de commande innovantes et efficaces pour la gestion de l'énergie de deux types de micros centrales solaires thermodynamiques : à base de moteur à cycle de Stirling et à base de machines à Cycle de Rankine Organique (ORC). Dans une première partie, nous considérons une centrale solaire thermodynamique à base de machine à cycle de Stirling hybridée à un supercondensateur comme moyen de stockage d'énergie tampon. Dans ce cadre, nous proposons une première loi de commande validée expérimentalement, associée au système de conversion d'énergie du moteur Stirling, qui dote le système de performances quasi optimales en termes de temps de réponse ce qui permet de réduire la taille du supercondensateur utilisé. Une deuxième loi de commande qui gère explicitement les contraintes du système tout en dotant ce dernier de performances optimales en terme de temps de réponse, est également proposée. Cette dernière loi de commande est en réalité plus qu'un simple contrôleur, elle constitue une méthodologie de contrôle applicable pour une famille de systèmes de conversion de l'énergie.Dans une deuxième partie, nous considérons une centrale solaire thermodynamique à base de machine à cycle de Rankine Organique (ORC) hybridée à un banc de batteries comme moyen de stockage d'énergie tampon. Etant donné que ce système fonctionne à vitesse de rotation fixe pour la génératrice asynchrone qui est connectée à un système de conversion d'énergie commercial, nous proposons une loi de commande prédictive qui agit sur la partie thermodynamique de ce système afin de le faire passer d'un point de fonctionnement à un autre, lors des appels de puissance des charges électriques, le plus rapidement possible (pour réduire le dimensionnement des batteries) tout en respectant les contraintes physiques du système. La loi de commande prédictive développée se base sur un modèle dynamique de la machine ORC identifié expérimentalement grâce à un algorithme d'identification nonlinéaire adéquat. / This Ph.D thesis was prepared in the scope of the MICROSOL project, ledby Schneider Electric, that aims at developing Off-grid solar thermodynamic micro powerplants exploiting the solar thermal energy. The aim of this thesis being the development of innovative and efficient control strategies for the energy management of two kinds of solar thermodynamic micro power plants: based on Stirling engine and based and Organic RankineCycle (ORC) machines.In a first part, we consider the Stirling based solar thermodynamic micro power planthybridized with a supercapacitor as an energy buffer. Within this framework, we propose afirst experimentally validated control strategy, associated to the energy conversion system ofthe Stirling engine, that endows the system with quasi optimal performances in term of settlingtime enabling the size reduction of the supercapacitor. A second control strategy that handlesexplicitly the system constraints while providing the system with optimal performances interm of settling time , is also proposed. This control strategy is in fact more than a simplecontroller, it is a control framework that holds for a family of energy conversion systems.In a second part, we consider the Organic Rankine Cycle (ORC) based thermodynamicmicro power plant hybridized with a battery bank as an energy buffer. Since this system worksat constant speed for the asynchronous generator electrically connected to a commercial energyconversion system, we propose a model predictive controller that acts on the thermodynamicpart of this system to move from an operating point to another, during the load power demandtransients, as fast as possible (to reduce the size of the battery banks) while respecting thephysical system constraints. The developed predictive controller is based upon a dynamicmodel, for the ORC power plant, identified experimentally thanks to an adequate nonlinearidentification algorithm.

Page generated in 0.0709 seconds