Spelling suggestions: "subject:"convex zones"" "subject:"convex jones""
1 |
Simultaneous confidence bands in linear modellingDonnelly, Jonathan January 2003 (has links)
No description available.
|
2 |
Likelihood Inference for Order Restricted ModelsAlmazmomi, Afnan 26 April 2018 (has links)
As we know the most popular inference methods for order restricted model are likelihood inference. In such models, the Maximum Likelihood Estimation (MLE) and Likelihood Ratio Testing (LRT) appear some suspect behaviour and unsatisfactory. In this thesis, I review the articles that focused in the behaviour of the Likelihood methods on Order restricted models. For those situations, an alternative method is preferred. However, likelihood inference is satisfactory for simple order cone restriction. But it is unsatisfactory when the restrictions are of the tree order, umbrella order, star-shaped and stochastic order types.
|
3 |
Converging Preferred Regions In Multi-objective Combinatorial Optimization ProblemsLokman, Banu 01 July 2011 (has links) (PDF)
Finding the true nondominated points is typically hard for Multi-objective
Combinatorial Optimization (MOCO) problems. Furthermore, it is not practical to
generate all of them since the number of nondominated points may grow
exponentially as the problem size increases. In this thesis, we develop an exact
algorithm to find all nondominated points in a specified region. We combine this
exact algorithm with a heuristic algorithm that approximates the possible locations of
the nondominated points. Interacting with a decision maker (DM), the heuristic
algorithm first approximately identifies the region that is of interest to the DM. Then,
the exact algorithm is employed to generate all true nondominated points in this
region. We conduct experiments on Multi-objective Assignment Problems (MOAP),
Multi-objective Knapsack Problems (MOKP) and Multi-objective Shortest Path
(MOSP) Problems / and the algorithms work well.
Finding the worst possible value for each criterion among the set of efficient
solutions has important uses in multi-criteria problems since the proper scaling of
each criterion is required by many approaches. Such points are called nadir points.
v
It is not straightforward to find the nadir points, especially for large problems with
more than two criteria. We develop an exact algorithm to find the nadir values for
multi-objective integer programming problems. We also find bounds with
performance guarantees. We demonstrate that our algorithms work well in our
experiments on MOAP, MOKP and MOSP problems.
Assuming that the DM' / s preferences are consistent with a quasiconcave value
function, we develop an interactive exact algorithm to solve MIP problems. Based on
the convex cones derived from pairwise comparisons of the DM, we generate
constraints to prevent points in the implied inferior regions. We guarantee finding the
most preferred point and our computational experiments on MOAP, MOKP and
MOSP problems show that a reasonable number of pairwise comparisons are
required.
|
4 |
Algèbres de Jordan euclidiennes et problèmes variationels avec contraintes coniques / Euclidean Jordan algebras and variational problems under conic constraintsSossa, David 04 September 2014 (has links)
Cette thèse concerne quatre thèmes apparemment différents, mais en fait intimement liés : problèmes variationnels sur les algèbres de Jordan euclidiennes, problèmes de complémentarité sur l’espace des matrices symétriques, analyse angulaire entre deux cônes convexes fermés et analyse du chemin central en programmation conique symétrique.Dans la première partie de ce travail, le concept de “commutation au sens opérationnel” dans les algèbres de Jordan euclidiennes est étudié en fournissant un principe de commutation pour problèmes variationnels avec données spectrales.Dans la deuxième partie, nous abordons l’analyse et la résolution numérique d’une large classe de problèmes de complémentarité sur l’espace des matrices symétriques. Les conditions de complémentarité sont exprimées en termes de l’ordre de Loewner ou, plus généralement, en termes d’un cône du type Loewnerien.La troisième partie de ce travail est une tentative de construction d’une théorie générale des angles critiques pour une paire de cônes convexes fermés. L’analyse angulaire pour une paire de cônes spécialement structurés est également considérée. Par-exemple, nous travaillons avec des sous-espaces linéaires, des cônes polyédriques, des cônes de révolution, des cônes “topheavy” et des cônes de matrices.La dernière partie de ce travail étudie la convergence et le comportement asymptotique du chemin central en programmation conique symétrique. Ceci est fait en utilisant des techniques propres aux algèbres de Jordan. / This thesis deals with four different but interrelated topics: variational problems on Euclidean Jordan algebras, complementarity problems on the space of symmetric matrices, angular analysis between two closed convex cones and the central path for symmetric cone linear programming.In the first part of this work we study the concept of “operator commutation” in Euclidean Jordan algebras by providing a commutation principle for variational problems involving spectral data.Our main concern of the second part is the analysis and numerical resolution of a broad class of complementarity problems on spaces of symmetric matrices. The complementarity conditions are expressed in terms of the Loewner ordering or, more generally, with respect to a dual pair of Loewnerian cones.The third part of this work is an attempt to build a general theory of critical angles for a pair of closed convex cones. The angular analysis for a pair of specially structured cones is also covered. For instance, we work with linear subspaces, polyhedral cones, revolution cones, topheavy cones and cones of matrices.The last part of this work focuses on the convergence and the limiting behavior of the central path in symmetric cone linear programming. This is done by using Jordan-algebra techniques.
|
Page generated in 0.0339 seconds