• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 19
  • 14
  • 14
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Misbehaving Relay Detection for Cooperative Communications without the Knowledge of Relay Misbehaviors

Li, Chieh-kun 17 July 2012 (has links)
In the cooperative communications, the users relay each other's signal and thus form multiple transmission paths to the destination and therefore the system can achieve spatial diversity gain. Most studies in the literature assumed that cooperative users acting as the relays are normally operated and trustworthy. However, this may not always be true in practice. When the relay misbehaviors are present in the cooperative communications, the communication performance may degrade dramatically and the users may be even better off without cooperation. Therefore, it is necessary for the destination to determine the misbehaving relays and to take appropriate actions to ensure that cooperative advantages are preserved. This thesis considers both models in which the cooperative communications are with direct path (WDP) and without direct path (WODP). Utilizing the proposed Kolmogorov-Smirnov test mechanism, the destination identifies the misbehaving relays within the cooperative communications and then excludes their transmitting messages when performing the diversity combining to infer the symbols of interest sent by the source. In addition, this thesis provides the bit error rate (BER) analysis of the cooperative communications employing the proposed misbehaving relay detectors. The simulation results demonstrate that the proposed methods have robust performance when the relay misbehaviors are present in the cooperative communications.
22

Optimal energy management strategies in wireless data and energy cooperative communications

Zhou, Jun 18 May 2018 (has links)
This thesis first presents a new cooperative wireless communication network strategy that incorporates energy cooperation and data cooperation. The model establishment, design goal formulations, and algorithms for throughput maximization of the proposed protocol are presented and illustrated using a three-node network with two energy harvesting (EH) user nodes and a destination node. Transmission models are established from the performance analysis for a total of four scenarios. Based on the models, we seek to find optimal energy management strategies by jointly optimizing time allocation for each user, power allocations over these time intervals, and data throughputs at user nodes so as to maximize the sum-throughput or, alternatively, the minimum throughput of the two users in all scenarios. An accelerated Newton barrier algorithm and an alternative algorithm based on local quadratic approximation of the transmission models are developed to solve the aforementioned optimization problems. Then the thesis extends the cooperative strategy to multi-source wireless communication network, where N source users communicate with the destination via one relay that harvests energy from the RF signals transmitted by the sources through time-division multiple access (TDMA). We characterize the Energy-Throughput (E-T) tradeoff regions between the maximum achievable average throughput of the sources and the total amount of saved energy in three circumstances. For the case N=1, all harvested energy will be used to forward the message. For the case N>1, we compare two transmission strategies: one is common PS ratio strategy that the relay adopts the same PS ratio for all sources; the other is individual PS ratio strategy that each source uses an individual PS ratio. Numerical experiments under practical settings provide supportive evidences to our performance analysis. / Graduate
23

Réseaux de capteurs pour l'assistance aux personnes : conception et développement de mécanismes de fiabilisation / Wireless Sensor Networks for assistance to person : design and development of reliability mechanisms

Mainaud, Bastien 22 July 2010 (has links)
Les réseaux de capteurs ont créé un domaine de recherche très intéressant avec un champs d'applications très large. L'assistance aux personnes est notamment une des nombreux champs potentiels. Les contraintes de ce type de réseaux sont nombreuses et nécessitent des mécanismes spécifiques. Les problématiques de consommation d'énergie et de sécurité sont particulièrement importantes et ont fait l'objet de travaux spécifiques. La thématique de l'assistance aux personnes impose notamment des contraintes de robustesse et de fiabilité des communications. Le but de ces travaux de recherche est de définir diverses solutions permettant de répondre à ces problématiques. Ces travaux se décomposent en trois parties. Dans un premier temps, une plate-forme de communications basée sur les réseaux personnels PAN a été définie. Cette plate-forme a été développée et intégrée dans une station de métro Parisienne. Une modélisation de cette plate-forme ainsi qu'une analyse des observations et des résultats issus de cette intégration nous ont permis d'identifier les faiblesses de l'architecture et des technologies mises en œuvre. Dans un deuxième temps, nous avons développé diverses solutions permettant de fiabiliser cette plate-forme. En particulier, nous avons conçu un algorithme d'ordonnancement permettant de réduire la consommation d'énergie dans les réseaux capteurs par l'utilisation d'une analyse sémantique des données. Nous avons ensuite proposé une architecture de sécurité, Tiny 3-TLS, qui permet de sécurisé les communications entre un capteur et une entité située sur un réseau disjoint. Enfin, nous nous sommes intéressés aux communications entre cette plate-forme et les terminaux mobiles. L'aspect fiabilité a en particulier fait l'objet de travaux spécifiques. C'est pourquoi dans un troisième temps, nous avons proposé une solution de routage définissant une nouvelle métrique. Nous avons ensuite proposé un protocole coopératif permettant un apport de fiabilité dans les communications / Wireless Sensors Networks is a very active research area with a very large scope of possible application. In particular, assistance to person is one of the promising applications. The constraints in this kind of networks are strong and needs of specifics mechanisms. Energy consumption and security are particularly important and are subject of several works. Assistance to person set some robustness constraints and communications reliability. The goal of these works is to define several solutions to answer to these problematic. This work has been split in three different parts. First, a communication platform based on Personal Network techniques was defined. This platform was design, develop and install in a Paris metro station. We made an analytical model of our platform to perform an analysis of its performances. This analysis and the results from the platform installation itself allow us to clearly define the architecture weaknesses and the technologies drawbacks. Second, we developed several solutions to bring reliability to the platform. First, we designed a scheduling algorithm allowing to reduce the bandwidth utilization. This algorithm uses a semantic data analysis to help the data scheduling. Then, we define a solution bringing security to the communications between a sensor node and a remote monitoring terminal. This solution allows to establish a secure end-to-end tunnel between two entities in an heterogeneous network. At last, we were interested to the communications between the platform and the mobile terminal. We focus our work on the reliability aspect of the communications. So, in the last part of this thesis, we suggest a routing protocol using a metric based on the RSSI. Then, we define a cooperative protocol bringing more reliability to the communications
24

Energy-Efficient Distributed Relay and Power Control in Cognitive Radio Cooperative Communications

Luo, C., Min, Geyong, Yu, F.R., Chen, M., Yang, L.T., Leung, V.C.M. January 2013 (has links)
no / In cognitive radio cooperative communication (CR-CC) systems, the achievable data rate can be improved by increasing the transmission power. However, the increase in power consumption may cause the interference with primary users and reduce the network lifetime. Most previous work on CR-CC did not take into account the tradeoff between the achievable data rate and network lifetime. To fill this gap, this paper proposes an energy-efficient joint relay selection and power allocation scheme in which the state of a relay is characterized by the channel condition of all related links and its residual energy. The CR-CC system is formulated as a multi-armed restless bandit problem where the optimal policy is decided in a distributed way. The solution to the restless bandit formulation is obtained through a first-order relaxation method and a primal-dual priority-index heuristic, which can reduce dramatically the on-line computation and implementation complexity. According to the obtained index, each relay can determine whether to provide relaying or not and also can control the corresponding transmission power. Extensive simulation experiments are conducted to investigate the effectiveness of the proposed scheme. The results demonstrate that the power consumption is reduced significantly and the network lifetime is increased more than 40%.
25

Cooperation in Wireless Networks

Sharma, Sushant 05 January 2011 (has links)
Spatial diversity, in the form of employing multiple antennas (i.e., MIMO), has proved to be very effective in increasing network capacity and reliability. However, equipping a wireless node with multiple antennas may not be practical, as the footprint of multiple antennas may not fit on a wireless node (particularly on handheld wireless devices). In order to achieve spatial diversity without requiring multiple antennas on the same node, the so-called cooperative communications (CC) has been introduced. Under CC, each node is equipped with only a single antenna and spatial diversity is achieved by exploiting the antennas on other nodes in the network through cooperative relaying. The goal of this dissertation is to maximize throughput at network level through CC at the physical layer. A number of problems are explored in this investigation. The main contributions of this dissertation can be summarized as follows. <b>1. Optimal Relay Assignment.</b> We first consider a simple CC model where each source-destination pair may employ only a single relay. For this three-node model, the choice of a relay node (among a set of available relay nodes) for a given session is critical in the overall network performance. We study the relay node assignment problem in a cooperative ad hoc network environment, where multiple source-destination pairs compete for the same pool of relay nodes in the network. Our objective is to assign the available relay nodes to different source-destination pairs so as to maximize the minimum data rate among all pairs. We present an optimal polynomial time algorithm, called ORA, that solves this problem. A novel idea in this algorithm is a "linear marking" mechanism, which maintains linear complexity at each iteration. We offer a formal proof of optimality for ORA and use numerical results to demonstrate its capability. <b>2. Incorporating Network Coding.</b> It has been shown that network coding (NC) can reduce the time-slot overhead when multiple session share the same relay node in CC. Such an approach is called network-coded CC (or NC-CC). Most of the existing works have mainly focused on the benefits of this approach. The potential adverse effect under NC-CC remains unknown. We explore this important problem by introducing the concept of network coding noise (NC noise). We show that due to NC noise, NC may not be always beneficial to CC. We substantiate this important finding in two important scenarios: analog network coding (ANC) in amplify-and-forward (AF) CC, and digital network coding (DNC) in decode-and-forward (DF) CC. We analyze the origin of NC noise via a careful study of signal aggregation at a relay node and signal extraction at a destination node. We derive a closed-form expression for NC noise at each destination node and show that the existence of NC noise could diminish the advantage of NC in CC. Our results shed new light on how to use NC in CC effectively. <b>3. Session Grouping and Relay Node Selection.</b> When there are multiple sessions in the network, it may be necessary to combine sessions into different groups, and then have each group select the most beneficial relay node for NC-CC. We study this joint grouping and relay node selection problem for NC-CC. By studying matching problems in hypergraphs, we show that this problem is NP-hard. We then propose a distributed and online algorithm to solve this problem. The key idea in our algorithm is to have each neighboring relay node of a newly joined session determine and offer the best group for this session from the groups that it is currently serving; and then to have the source node of this newly joined session select the best group among all received offers. We show that our distributed algorithm has polynomial complexity. Using extensive numerical results, we show that our distributed algorithm is near-optimal and adapts well to online network dynamics. <b>4. Grouping and Matching for Multi-Relay Cooperation.</b> Existing models of NC-CC consider only single relay node for each session group. We investigate how NC-CC behaves when multiple relay nodes are employed. For a given session, we develop closed form formulas for the mutual information and achievable rate under multi-relay NC-CC. In multi-relay NC-CC, the achievable rate of a session depends on the other sessions in its group as well as the set of relay nodes used for NC-CC. Therefore, we study NC-CC via joint optimization of grouping and matching of session and relay groups in an ad hoc network. Although we show that the joint problem is NP-hard, we develop an efficient polynomial time algorithm for grouping and matching (called G²M). G²M first builds beneficial relay groups for individual sessions. This is followed by multiple iterations during which sessions are combined with other sessions to form larger and better session groups (while corresponding relay groups are merged and updated accordingly). Using extensive numerical results, we show the efficiency and near optimality of our G²M algorithm. / Ph. D.
26

Dynamic Cooperative Communications in Wireless Ad-Hoc Networks

Kim, Haesoo 13 August 2008 (has links)
This dissertation focuses on an efficient cooperative communication method for wireless ad hoc networks. Typically, performance enhancement via cooperative communications can be achieved at the cost of other system resources such as additional bandwidth, transmit power, or more complex synchronization methods between cooperating signals. However, the proposed ooperative transmission scheme in this research utilizes system resources more efficiently by reducing the redundant and wasteful cooperating signals typically required, while maintaining the desired performance improvement. There are four main results in this dissertation. First, an efficient cooperative retransmission scheme is introduced to increase bandwidth efficiency by reducing wasteful cooperating signals. The proposed cooperative transmission method does not require any additional information for cooperation. Furthermore, we ensure good quality for the cooperating signals through a simple yet effective selection procedure. Multiple cooperating nodes can be involved in the cooperation without prior planning via distributed beamforming. The proposed cooperative retransmission scheme outperforms traditional retransmission by the source as well as other cooperative methods in terms of delay and packet error rate (PER). Secondly, the outage probabilities of the cooperative retransmission scheme are analyzed for both the perfect synchronization case and when offset estimation is performed for distributed beamforming. The performance with offset estimation is close to the perfect synchronization case, especially for short data packets. A low-rate feedback channel is introduced to adjust the phase shift due to channel variation and the residual frequency offset. It is shown that substantial gain can be achieved with a low-rate feedback channel, even for long data packets. Third, the throughput efficiency and average packet delay of the proposed cooperative retransmission scheme are analyzed using a two-state Markov model for both a simple automatic repeat request (ARQ) and a hybrid ARQ technique. The benefits of the cooperative ARQ approach are also verified in a multihop network with random configurations when there are concurrent packet transmissions. The average transmit power for the cooperating signals is also investigated in the proposed cooperative transmission scheme with various power control approaches. Finally, cooperative multiple input multiple output (MIMO) systems are examined, mainly focusing on power allocation methods to increase overall channel capacity. An efficient and simple power allocation method at the cooperating node is proposed which can be used for an arbitrary number of antennas without any additional information. / Ph. D.
27

On the Performance Assessment of Advanced Cognitive Radio Networks

Chu, Thi My Chinh January 2015 (has links)
Due to the rapid development of wireless communications together with the inflexibility of the current spectrum allocation policy, radio spectrum becomes more and more exhausted. One of the critical challenges of wireless communication systems is to efficiently utilize the limited frequency resources to be able to support the growing demand of high data rate wireless services. As a promising solution, cognitive radios have been suggested to deal with the scarcity and under-utilization of radio spectrum. The basic idea behind cognitive radios is to allow unlicensed users, also called secondary users (SUs), to access the licensed spectrum of primary users (PUs) which improves spectrum utilization. In order to not degrade the performance of the primary networks, SUs have to deploy interference control, interference mitigating, or interference avoidance techniques to minimize the interference incurred at the PUs. Cognitive radio networks (CRNs) have stimulated a variety of studies on improving spectrum utilization. In this context, this thesis has two main objectives. Firstly, it investigates the performance of single hop CRNs with spectrum sharing and opportunistic spectrum access. Secondly, the thesis analyzes the performance improvements of two hop cognitive radio networks when incorporating advanced radio transmission techniques. The thesis is divided into three parts consisting of an introduction part and two research parts based on peer-reviewed publications. Fundamental background on radio propagation channels, cognitive radios, and advanced radio transmission techniques are discussed in the introduction. In the first research part, the performance of single hop CRNs is analyzed. Specifically, underlay spectrum access using M/G/1/K queueing approaches is presented in Part I-A while dynamic spectrum access with prioritized traffics is studied in Part I-B. In the second research part, the performance benefits of integrating advanced radio transmission techniques into cognitive cooperative radio networks (CCRNs) are investigated. In particular, opportunistic spectrum access for amplify-and-forward CCRNs is presented in Part II-A where collaborative spectrum sensing is deployed among the SUs to enhance the accuracy of spectrum sensing. In Part II-B, the effect of channel estimation error and feedback delay on the outage probability and symbol error rate (SER) of multiple-input multiple-output CCRNs is investigated. In Part II-C, adaptive modulation and coding is employed for decode-and-forward CCRNs to improve the spectrum efficiency and to avoid buffer overflow at the relay. Finally, a hybrid interweave-underlay spectrum access scheme for a CCRN is proposed in Part II-D. In this work, the dynamic spectrum access of the PUs and SUs is modeled as a Markov chain which then is utilized to evaluate the outage probability, SER, and outage capacity of the CCRN.
28

Efficient spectrum sensing and utilization for cognitive radio

Zhou, Xiangwei 11 August 2011 (has links)
Cognitive radio (CR) technology has recently been introduced to opportunistically exploit the spectrum. We present a robust and cost-effective design to ensure the improvement of spectrum efficiency with CR. We first propose probability-based spectrum sensing by utilizing the statistical characteristics of licensed channel occupancy, which achieves nearly optimal performance with relatively low complexity. Based on the statistical model, we then propose periodic spectrum sensing scheduling to determine the optimal inter-sensing duration and vary the transmit power at each data sample to enhance throughput and reduce interference. We further develop a probability-based scheme for combination of local sensing information collected from cooperative CR users, which enables combination of both synchronous and asynchronous sensing information. To satisfy the stringent bandwidth constraint for reporting, we also propose to simultaneously send local sensing data to a combining node through the same narrowband channel. With proper preprocessing at individual users, such a design maintains reasonable detection performance while the bandwidth required for reporting does not change with the number of cooperative users. To better utilize the spectrum and avoid possible interference, we propose spectrum shaping schemes based on spectral precoding, which enable efficient spectrum sharing between CR and licensed users and exhibit the advantages of both simplicity and flexibility. We also propose a novel resource allocation approach based on the probabilities of licensed channel availability obtained from spectrum sensing. Different from conventional approaches, the probabilistic approach exploits the flexibility of CR to ensure efficient spectrum usage and protect licensed users from unacceptable interference.
29

Le codage distribué pour un réseau de capteurs sans-fil basé sur les turbo codes en bloc

Yin, Yizhi 07 December 2012 (has links) (PDF)
Cette thèse étudie les performances d'un réseau de capteurs sans-fil coopératif, basé sur un codage réseau algébrique linéaire appliqué au relais. On considère un schéma coopératif basé sur le code produit en bloc où un grand nombre de sources transmettent des données indépendantes codées par un premier code en bloc vers un seul destinataire avec l'aide du relais. Dans ce schéma, le relais applique le codage réseau algébrique linéaire en utilisant un code correcteur d'erreur systématique linéaire en bloc sur les mots de code source détectés par le relais. Seule, la redondance générée par le relais est transférée vers le destinataire. Le destinataire observe un mot de code produit en bloc en combinant les observations des sources et du relais. Premièrement, on aborde la coopération en mode time-division multiple-access (TDMA) et suppose un canal source-relais bruité. On analyse les probabilités théoriques à l'entrée et à la sortie du relais pour différente stratégies de détection au relais. On établit aussi une borne théorique sur la probabilité d'erreur de trame pour le schéma coopératif proposé. Puis on évalue la coopération multi-relais afin de traiter la corrélation des erreurs dans la redondance générée par le relais. Différents configurations de coopération (mono ou multi-relais avec différentes stratégies au relais) sont comparées. On montre que la liaison source-relais est le maillon faible du réseau. On évalue ensuite la capacité du réseau sous la condition de taille finie du code. Ensuite, on étudie la coopération basée sur la technique code-division multiple-access (CDMA) appliqué au relais de telle sorte que le signal du relais est avec ceux des sources dans la même bande de fréquence radio. Pour simplifier l'analyse, on suppose un canal source-relais sans erreur. On propose une procédure de décodage itératif avec la neutralisation de l'interférence. On formule deux cas de coopération basé sur CDMA: TDMA-CDMA avec répartition orthogonale dans le temps entre les sources et FDMA-CDMA avec allocation de sous-bandes de fréquence disjointes pour les sources. Le ratio d'allocation d'énergie entre les sources et le relais est évalué en utilisant les simulations.
30

Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

January 2017 (has links)
abstract: Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate. Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017

Page generated in 0.1631 seconds