• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 18
  • 18
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Methods of cooperative routing to optimize the lifetime of multi-hop wireless sensor networks

Jung, Jin Woo 05 April 2013 (has links)
This dissertation presents methods of extending the network lifetime of multi-hop wireless sensor networks (WSNs) through routing that uses cooperative transmission (CT), referred to as cooperative routing. CT can have a signal-to-noise ratio (SNR) advantage over non-CT schemes through cooperative diversity and simple aggregation of transmit power, and one of its abilities is to extend the communication range of a wireless device using this SNR advantage. In this research, we use the range-extension ability of CT as a tool to mitigate the energy-hole problem of multi-hop WSNs and extend the network lifetime. The main contributions of this research are (i) an analytical model for a cooperative routing protocol with a deployment method, (ii) cooperative routing protocols that can extend the network lifetime, and (iii) formulating the lifetime-optimization problem for cooperative routing. The analytical model developed in this research theoretically proves that, in a situation where non-CT routing cannot avoid the energy-hole problem, our CT method can solve the problem. PROTECT, a CT method based on the analytical model, provides a very simple way of doing cooperative routing and can improve the lifetime of non-CT networks significantly. REACT, a cooperative routing protocol that uses the energy information of nodes, overcomes some of the limitations of PROTECT and can be applied to any existing non-CT routing protocol to improve the network lifetime. Using REACT and analytical approaches, we also show that cooperative routing can be beneficial in multi-hop energy-harvesting WSNs. By formulating and solving the lifetime-optimization problem of cooperative routing, which requires a much more sophisticated formulation than that of non-CT routing, we explore the optimal lifetime bounds and behaviors of cooperative routing. Finally, we study and design online cooperative routing methods that can perform close to the optimal cooperative routing.
12

Experimentation and physical layer modeling for opportunistic large array-based networks

Jung, Haejoon 22 May 2014 (has links)
The objective of this dissertation is to better understand the impact of the range extension and interference effects of opportunistic large arrays (OLAs), in the context of cooperative routing in multi-hop ad hoc networks. OLAs are a type of concurrent cooperative transmission (CCT), in which the number and location of nodes that will participate in a particular CCT cannot be known a priori. The motivation of this research is that the previous CCT research simplifies or neglects significant issues that impact the CCT-based network performance. Therefore, to develop and design more efficient and realistic OLA-based protocols, we clarify and examine through experimentation and analysis the simplified or neglected characteristics of CCT, which should be considered in the network-level system design. The main contributions of this research are (i) intra-flow interference analysis and throughput optimization in both disk- and strip-shaped networks, for multi-packet OLA transmission, (ii) CCT link modeling focusing on path-loss disparity and link asymmetry, (iii) demonstration of CCT range-extension and OLA-based routing using a software-defined radio (SDR) test-bed, (iv) a new OLA-based routing protocol with practical error control algorithm. In the throughput optimization in presence of the intra-channel interference, we analyze the feasibility condition of spatially pipelined OLA transmissions using the same channel and present numerical results with various system parameters. In the CCT link model, we provide the impact of path-loss disparity that are inherent in a virtual multiple-input-single-output (VMISO) link and propose an approximate model to calculate outage rates in high signal-to-noise-ratio (SNR) regime. Moreover, we present why link asymmetry is relatively more severe in CCT compared to single-input-single-output (SISO) links. The experimental studies show actual measurement values of the CCT range extension and realistic performance evaluation of OLA-based routing. Lastly, OLA with primary route set-up (OLA-PRISE) is proposed with a practical route recovery technique.
13

Opportunistic large array (OLA)-based routing for sensor and adhoc wireless networks

Thanayankizil, Lakshmi 13 January 2014 (has links)
An Opportunistic Large Array (OLA) is a form of cooperative diversity in which a large group of simple, inexpensive relays operate without any mutual coordination, but naturally fire together in response to the energy received from a single source or another OLA. The main contributions of this thesis are the introduction of two OLA-based routing protocols: OLA Concentric Routing Algorithm (OLACRA), which is an upstream routing algorithm suitable for static wireless sensor networks (WSNs), and OLA Routing On-Demand (OLAROAD), which is a robust reactive routing scheme suitable for mobile ad hoc networks (MANETs). In fixed multi-hop wireless sensor networks with a single sink, where energy conservation is often a concern, simulations of the new algorithms show as much as 80% of the transmit energy required to broadcast data can be saved, relative to existing OLA-based broadcasting approaches. In MANETs, where robustness of the routes is an important performance indicator, OLAROAD-based cooperative routes last much longer compared to their state-of-art multi-hop non-cooperative transmission (CT)-based counterparts. However, OLACRA and OLAROAD have higher node participation, and thereby lower throughput, in comparison with the non-CT schemes. To improve the throughput, and thereby bandwidth utilization, the properties of uplink OLAs and their suppression regions are carefully studied. Based on the observations, Hop-Optimized OLACRA (HOLA), which is a variant of OLACRA, and has the maximum bandwidth utilization amongst all the OLA unicast schemes studied, is proposed. HOLA routes have bandwidth utilization comparable to non-CT schemes, but a much lower (~10 dB less) transmit power per node. The last section of this thesis treats the MAC design for OLA-based networks. In contrast to non-CT networks, a 802.11-based RTS/CTS MAC scheme is shown to reduce the reliability in OLA unicast schemes. A distributed cluster-head-based MAC scheme for channel reservation and OLA Size Adaptation Mechanism for link repair/maintenance are proposed for OLA-based networks. The performances of these protocols are shown to be comparable to a non-CT multihop scheme using the RTS/CTS/DATA/ACK handshake-based link layer design.
14

Design of concurrent cooperative transmission systems on software-defined radios

Chang, Yong Jun 13 January 2014 (has links)
Concurrent cooperative transmission (CCT) occurs when a collection of power-constrained single-antenna radios transmit simultaneously to form a distributed multi-input and multi-output (DMIMO) link. DMIMO can be a means for highly reliable and low-latency cooperative routing, when the MIMO channel is exploited for transmit and receive diversity; in this context, the range extension benefit is emphasized. Alternatively, DMIMO can be a means for high-throughput ad hoc networking, when the MIMO channel is used with spatial multiplexing. In both cases, concatenated DMIMO links are treated. The key contribution of this dissertation is a method of pre-synchronization of distributed single-antenna transmitters to form a virtual antenna array, in the absence of a global clock, such as a global positioning system (GPS) receiver or a network time protocol (NTP) to provide reference signals for the synchronization. Instead, the reference for synchronization comes from a packet, transmitted by the previous virtual array and simultaneously received by all the cooperative transmitters for the next hop. The method is realized for two types of modulation: narrowband non-coherent binary frequency-shift keying (NCBFSK) and wideband orthogonal frequency division multiplexing (OFDM). The pre-synchronization algorithms for transmission are designed to minimize the root-mean-square (RMS) transmit time, sampling and carrier frequency error between cooperative transmitters, with low implementation complexity. Since CCT is not supported by any existing standard or off-the-shelf radios, CT must be demonstrated by using software-defined radios (SDRs). Therefore, another contribution is a fully self-contained and real-time SDR testbed for CCT-based networking. The NCBFSK and OFDM systems have been designed and implemented in C++ and Python programming languages in the SDR testbed, providing practical performance of the CCT-based systems.
15

Opportunistic large array concentric routing algorithm (OLACRA) for upstream routing in wireless sensor networks

Thanayankizil, Lakshmi V. 19 November 2008 (has links)
An opportunistic large array (OLA) is a form of cooperative diversity in which a large group of simple, inexpensive relays or forwarding nodes operate without any mutual coordination, but naturally fire together in response to energy received from a single source or another OLA. When used for broadcast, OLAs form concentric rings around the source, and have been shown to use less energy than conventional multi-hop protocols. This simple broadcasting scheme, which is already known, is called Basic OLA. The OLA Concentric Routing Algorithm (OLACRA), which is our contribution, takes advantage of the concentric ring structure of broadcast OLAs to limit flooding on the upstream connection. By limiting the node participation, OLACRA saves over 80% of the energy compared to Basic OLA, without requiring GPS, individual node addressing, or inter-node interaction. This thesis analyzes the performance of OLACRA over 'deterministic channels' where transmissions are on non-faded orthogonal channels and on 'diversity channels' where transmissions are on Rayleigh flat fading limited orthogonal channels. The performance of diversity channels is shown to approach the deterministic channel at moderate orders of diversity. Enhancements to OLACRA to further improve its efficiency by flooding in the initial upstream level and limiting the downlink 'step sizes' are also considered. The protocols are tested using Monte Carlo evaluation.
16

Transmission coopérative et traitement du signal distribué avec feedback et backhaul limité / Distributed transmitter cooperation and signal processing with limited feedback and backhaul

Li, Qianrui 14 March 2016 (has links)
La coopération des émetteurs est considérée comme une approche prometteuse pour limiter les interférences dans les réseaux sans fil ayant une réutilisation des ressources spectrales très agressive. La coopération des émetteurs permet l'optimisation conjointe de certains paramètres de transmission. Bien que la coopération des émetteurs existe sous différentes formes, une hypothèse commune est le besoin pour les émetteurs entrant en coopération (i) d’acquérir et de partager des informations concernant le canal de propagation ainsi que (ii) d’effectuer une coopération fondée sur les informations diffusées à l'étape précédente. La conception coordonnée des matrices de précodage et, d’une manière encore plus marquée, la transmission conjointe à différents émetteurs sont des exemples importants de méthodes de coopérations présentant ces propriétés. L’acquisition et l'échange de l’information de canal étant strictement limités, il se pose deux questions importantes: (i) Quelle information doit être renvoyée ou échangée de manière à permettre la coopération la plus efficace? (ii) Quelles méthodes permettent de réaliser les gains de la coopération dans ce contexte de partage limité et imparfait d’information? Dans cette thèse, nous abordons les deux questions précédentes. Dans un premier temps, nous considérons que chaque émetteur acquiert une estimée de canal imparfaite. Dans un second temps, nous étudions la conception de techniques de coopération efficaces dans une configuration d’information de canal imparfaitement partagée entre les émetteurs. Enfin, les futures directions de recherche découlant de ces travaux sont présentées et discutées. / Transmitter cooperation is considered a promising tool for dealing with interference in wireless networks with an aggressive reuse policy of spectral resources. Although transmitter cooperation comes in many flavors, a recurrent assumption behind proposed methods lies in the need for cooperating devices to (i) acquire, share information pertaining to the propagation channel toward the multiple receivers and (ii) perform cooperation based on the disseminated information in the previous step. This holds true for instance for coordinated beamforming methods and, to an even greater extent, for network-MIMO (Joint Processing coordinated multi-point (JP CoMP) in the long term evolution (LTE) terminology). As feedback and exchange of channel state information (CSI) come at a price in terms of signaling overhead, there arise two important questions: (i) What information should be fed back or exchanged such that the CSI acquired at each transmitter is most informative to perform cooperation? (ii) Which techniques can reap the benefits of cooperation while living with an imperfect channel representation that varies from transmitter to transmitter ? In this thesis, we address both aforementioned questions. We consider first each transmitter acquires an initial imperfect CSI based on limited receivers feedback. For the design of efficient cooperation techniques that copes with the imperfect and non-identical CSI configuration at each transmitter, we investigate specifically a regularized zero forcing (RZF) precoder design in large system scenario. Finally, interesting and challenging research directions and open problems are discussed.
17

On the Performance Analysis of Cooperative Vehicular Communication

Feteiha, Mohamed January 2012 (has links)
Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement.
18

On the Performance Analysis of Cooperative Vehicular Communication

Feteiha, Mohamed January 2012 (has links)
Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement.

Page generated in 0.394 seconds