• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 68
  • 18
  • 7
  • 7
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 224
  • 224
  • 87
  • 43
  • 28
  • 27
  • 26
  • 24
  • 23
  • 23
  • 21
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Theoretical investigation of CH,HC contacts and other intramolecular interactions in 2,2′-Bipyridine and itscomplexes with metal ions

De Lange, Jurgens Hendrik January 2013 (has links)
2,2′-Bipyridine (BPy), one of the most widely used ligands in coordination chemistry, exists naturally in the s-trans conformation but must preorganize to the s-cis conformer in order to form chelating complexes. Lower stability of the s-cis conformer was mainly attributed to steric 3,3′-hydrogen clashes and nitrogen lone pair-lone pair interactions, but recent trends in the literature suggest that these clashes might be bonding interactions in similar molecules. These close contacts are also present in metal complexes with BPy and are often used as “steric repulsions” in order to explain trends in formation constants. In the present work we investigate the CH•••HC interaction in the free ligand as well as in ZnII(BPy)n(OH2)6-2n and NiII(BPy)n(OH2)6-2n complexes. We use multiple distinct advances in theoretical chemistry in order to arrive at a consistent and coherent model describing these interactions. The Quantum Theory of Atoms in Molecules (QTAIM) reveals the presence of an atomic interaction line (a bond path) for the CH•••HC interaction. Using the Interacting Quantum Atoms (IQA) energy decomposition scheme we show that the CH•••HC interaction is attractive and quantum mechanical in nature. The Extended Transition State coupled with Natural Orbitals for Chemical Valence (ETS-NOCV) energy decomposition scheme show favorable orbital mixing, and Non-Covalent Interaction (NCI) analysis reveals that no steric (Pauli) strain exists in the valence (overlap) regions of the interaction - electron density is concentrated rather than depleted in the bonding region. We also studied various other interactions, ranging from purely repulsive (N--N interaction in the s-cis conformer of BPy), purely electrostatic (CH•••N interaction in s-trans conformer of BPy), H-bonding (CH–N and CH–O bonds in complexes) to coordination bonds and covalent bonds. Using a comparative approach, we show the similarities and differences among the interactions, and conclude that the CH•••HC interaction cannot be classified as a “steric repulsion” - the interaction is similar in properties to every studied known bonding interaction and opposite in nature to the studied known repulsions. Finally, we suggest novel interpretations and understanding of the nature of intramolecular interactions and the field of theoretical chemistry, as well as representing the first work to combine and corroborate QTAIM, IQA, NCI and ETS-NOCV findings. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Chemistry / unrestricted
92

Systèmes catalytiques pour la photosynthèse artificielle : optimisation par l'application des concepts du design moléculaire en chimie de coordination

Auvray, Thomas 07 1900 (has links)
Dans le contexte éco-environnemental actuel, l’Humanité est à la recherche d’alternatives pour remplacer les carburants fossiles responsables du changement climatique affectant le quotidien un peu plus chaque année. Inspiré par la Nature et le processus de la photosynthèse, un nouveau domaine à l’interface entre chimie, physique et ingénierie émergea dans les années 70 : la photosynthèse artificielle. Depuis, de nombreux systèmes catalytiques ont été rapportés mais leur intégration à l’échelle commerciale n’est pas encore d’actualité. De nombreux défis demeurent afin d’améliorer les performances, coupler les différentes réactions et s’assurer de la stabilité à long terme des dispositifs. Dans le cadre de cette thèse de doctorat, nous nous sommes attachés à explorer la chimie de coordination de complexes de ruthénium et de rhénium, omniprésents dans la littérature mais dont les propriétés peuvent être encore largement modulées par le design de nouveaux ligands. Dans un deuxième temps, les polyoxométallates, composés inorganiques à mi-chemin entre oxydes et molécules aux propriétés fascinantes, ont été recrutés pour développer des dyades covalentes, stratégie permettant de stabiliser un chromophore dans les conditions photocatalytiques. / In the current ecological and environmental context, Mankind needs to find alternative energy sources to replace fossil fuels, as their combustion is a major cause of the current global climate change affecting our daily life a bit more each year. Inspired by Nature and the photosynthetic process, a new area at the interface between chemistry, physics and engineering has emerged in the 70s: artificial photosynthesis. Since then, many catalytic systems have been reported but their integration at commercial scale has not yet been achieved. Several challenges remain to improve their performances, ensure efficient coupling between the different reactions and enhance the long-term stability of these devices. Within this doctoral thesis, we have focused on exploring the coordination chemistry of ruthenium and rhenium complexes, ubiquitous in the literature though their properties can still be vastly tuned by designing new ligands. In a different approach, polyoxometalates, which are inorganic compounds half-way between oxides and molecules with fascinating properties, were recruited to develop covalent dyads, a strategy enabling stabilization of the dye under photocatalytic conditions.
93

Synthesis, characterization and photochemical properties of 3d transition metal supported by aroyl-hydrazone ligands / Synthèse, caractérisation et propriétés photochimiques de complexes de métaux de transition 3d supportés par des ligands de type aroyle-hydrazone

Cheaib, Khaled 05 September 2013 (has links)
Ce travail de thèse explorait certains aspects de la chimie de coordination de complexes moléculaires à bases de métaux 3d (Fe, Cu, Mn et Ni) supportés par des ligands azotés de type aroyle-hydrazone. Le travail de cette thèse était plus particulièrement centré sur le développement des nouveaux ligands et la photo chimie des complexes ferriques, afin d’élucider en particulier les mécanismes de la photo réduction qui valorise un brevet du laboratoire sur la production et le stockage d’énergie solaire via la photo réduction d’ions ferriques. Les complexes mis en jeu dans le processus ont été totalement caractérisés en solution et à l’état solide. Ce phénomène prend place en solution comme en solution gelée. La cinétique du processus photochimique a été suivie par UV-Visible comme par RPE. Cette photo réduction passe par un intermédiaire radicalaire et le solvant joue le rôle du donneur des électrons. Ce processus a été totalement étudié : l’effet du solvant, l’effet de la modification dans la sphère de coordination du complexe, l’effet de la modification de la périphérie des ligands et finalement l’effet des longueurs d’ondes. D’autres domaines sont également explorés, comme le magnétisme moléculaire ou encore la catalyse homogène (oligomérisation de l’éthylène) avec des complexes à base de Ni2+. / This PhD thesis explored some aspects of the coordination chemistry of molecular complexes based on 3d transition metal ions (Fe, Cu, Mn and Ni) coordinated by multidentate aroyl-hydrazone ligands. The work of this thesis was particularly focused on the development of new ligands, their coordination chemistry and the photochemistry of ferric complexes. The central objective of this work was to elucidate the mechanism of the photo reduction process, in order to valorize an already accepted laboratory patent on the production and storage of solar energy. The complexes involved in the process have been fully characterized in solution and in the solid state. This phenomenon takes place in solution as in frozen solution. The kinetics of the photochemical process was followed by UV-Visible as by RPE. This photo reduction passes through a radical intermediate and the solvent plays the role of the electron donor. This process has been fully studied: the effect of the solvent, the effect of the modification in the coordination sphere of the complex, the effect of the modification of the periphery of the ligands and finally the effect of the light and different wavelengths. Other fields are also explored, such as molecular magnetism for different mono and dinuclear iron and manganese complexes or even homogeneous catalysis (oligomerization of ethylene) with complexes based on Ni(II).
94

Synthesis and Characterization of Tri- and Tetravalent Actinide Amidinates

Fichter, Sebastian 27 November 2020 (has links)
Auch mehr als 80 Jahre nach der Entdeckung des ersten Transuranelements sind die fundamentalen Eigenschaften der Actiniden noch nicht hinreichend untersucht. Dies zeigt sich zum Beispiel in der relativ geringen Anzahl von strukturell charakterisierten Actinid- (8.790 Treffer) und insbesondere Transuran-Komplexen (537 Treffer) in der Cambridge Structural Database (Stand 29.05.20). Die Motivation dieser Doktorarbeit ist es daher, die bestehende Wissenslücke über die grundlegenden Eigenschaften der frühen Actinide, d.h. der Elemente Thorium bis Plutonium, durch die Untersuchung ihrer Koordinationschemie mit organischen Ligandmolekülen zu verringern. Zu diesem Zweck wurden während dieser Arbeit 36 neue Actinidverbindungen synthetisiert und charakterisiert, darunter auch die ersten Transuran-Amidinat-Komplexe und der erste metallorganische Neptuniumkomplex, welcher eine koordinative Np‒Br Bindung aufweist. Die Charakterisierung dieser Verbindungen erfolgte nicht nur im festen Zustand, sondern auch in Lösung. Zusätzlich wurden quantenchemische Berechnungen durchgeführt, sodass ein umfassendes Bild der Komplexstrukturen und ihrer Bindungssituation erstellt werden konnte. Diese Arbeit beinhaltet Komplexverbindungen der frühen Actiniden in deren wichtigsten Oxidationsstufen (+III bis +VI), wobei der Hauptschwerpunkt auf der drei- und vierwertigen Oxidationsstufe aufgrund der einfachen Zugänglichkeit und Vergleichbarkeit mit Lanthaniden und Übergangsmetallen liegt. Das Ziel dieser Arbeit ist es zudem, die potentielle Beteiligung der Valenzorbitale der Actiniden an der Bindung zu weniger harten Donoratomen, wie Stickstoff, aufzuklären. Dazu werden die Eigenschaften der Actinid–Stickstoff-Bindungen innerhalb von Serien von Actinid-Amidinat-Komplexen mit ihren Lanthanid- und Übergangsmetall-Analoga verglichen. Diese Untersuchungen werden durch quantenchemische Berechnungen unterstützt, um eine detaillierte Analyse der elektronischen Struktur der Komplexverbindungen zu ermöglichen. Im Rahmen dieser Arbeit wurden zwei verschiedene Arten von Amidinaten, N,Nʹ- Bis(isopropyl)-benzamidinat (iPr2BA) und (S,S)-N,Nʹ-Bis(1-phenylethyl)-benzamidinat ((S)-PEBA), zur Synthese von isostrukturellen Bis- und Tris(amidinat)-Komplexen eingesetzt. Es konnte dabei gezeigt werden, dass die maximal zugängliche Stöchiometrie, d.h. das Metall-zu-Ligand Verhältnis, durch den Ionenradius der jeweiligen Metallkationen und den sterischen Bedarf des Liganden bestimmt wird. So bilden die relativ kleinen vierwertigen Übergangsmetalle Titan und Hafnium ausschließlich Bis(amidinat)-Komplexe mit den verwendeten Benzamidinaten, während Tris(amidinat)-Komplexe für die größeren vierwertigen Kationen Zirkonium und Cer sowie die Actiniden Thorium, Uran, und Neptunium synthetisiert werden konnten. Der Unterschied zwischen der Koordinationschemie der Übergangsmetalle Zirkonium und Hafnium mit den verwendeten Amidinatliganden ist unerwartet und könnte hinweisgebend für zukünftige Trenntechnologien der beiden Elemente sein. Es wurden zudem zwei Serien von Tris(amidinat)-Komplexen ([MIVCl(iPr2BA)3] und [MIVCl((S)-PEBA)3]) synthetisiert und hinsichtlich ihrer koordinativen Bindungslängen analysiert. Einkristall-Röntgenbeugungsdaten (SC-XRD) weisen auf eine vorwiegend ionische Bindung zwischen den Metallen und den koordinierenden Atomen (Stickstoff und Chlor) hin. Eine bemerkenswerte Ausnahme bildet dabei der vierwertige Cerkomplexes [CeCl((S)- PEBA)3], welcher deutlich längere Bindungslängen als die isostrukturelle Actinidenkomplexserie aufweist. Dies deutet auf ein unterschiedliches Bindungsverhalten zwischen den 4f- und 5f-Elementen hin, welches mit quantenchemischen Berechnungen untersucht wurde. Die Analyse mittels Quantum Theory of Atoms in Molecules (QTAIM) und Natural Bond Orbitals (NBO) weist auf einen kovalenteren Charakter der Ce‒N-Bindungen im Vergleich zu den Th‒N-Bindungen hin. Dieses unerwartete Ergebnis unterstreicht die Notwendigkeit quantenchemischer Berechnungen und zeigt den starken Einfluss verschiedener Kristallpackungseffekte auf die Aufklärung der Bindungseigenschaften. Darüber hinaus zeigen QTAIM- und NBO-Analysen eine Zunahme des kovalenten Charakters innerhalb der Actinidenserie von Thorium zu Uran, gefolgt von einem Plateau ähnlicher Kovalenz von Uran zu Plutonium. Die Ursache der kovalenten Wechselwirkung unterscheidet sich jedoch. Bei Uran ergibt sich der Hauptbeitrag zum kovalenten Charakter aus der Beteiligung von 6d-Orbitalen, während bei Plutonium der 5f-Beitrag dominant ist. Die bestimmende Rolle der 5f-Orbitale bei der Bindung zu Stickstoff-Donor-Liganden zeigt sich daher nur für vierwertiges Neptunium und Plutonium und nicht für die leichteren Actiniden. Im Gegensatz zu den Untersuchungen der [MIVCl((S)-PEBA)3]-Komplexreihe bestätigt eine detaillierte Analyse der Bindungseigenschaften der dreiwertigen Actinidkomplexe vom Typ [MIII((S)-PEBA)3] eindeutig einen höheren kovalenten Anteil der AnIII‒N-Bindungen im Vergleich zu den Lanthanid-Analoga sowohl durch experimentell bestimmte MIII‒ N- Bindungslängen als auch durch quantenchemische Berechnungen mittels QTAIM- und NBO-Analysen. Dieser Unterschied im kovalenten Charakter von drei- und vierwertigen Actinidkomplexen kann auf die höhere LEWIS-Acidität der Letzteren zurückgeführt werden. Dies wurde zum ersten Mal unter Verwendung des gleichen Typs von Stickstoff-Donor-Liganden für beide Oxidationszustände im Rahmen dieser Arbeit bestätigt. Die Ergebnisse deuten weiterhin auf eine Beteiligung der Valenzelektronen der Actiniden an der Bindung und damit auf einen erhöhten Überlapp mit den Ligandorbitalen, insbesondere für die dreiwertigen Actiniden, hin. Die vierwertigen Actinid-Chloro-Komplexe wurden außerdem hinsichtlich ihrer Reaktivität untersucht, wobei (Pseudo-)Halogenid-Austauschreaktionen durchgeführt wurden. Diese ergaben die entsprechenden Fluoro-, Bromo- und Azidokomplexe. Diese Substitutionschemie wurde dabei erstmals für ein Transuranelement angewandt, wodurch unbekannte Neptunium-(Pseudo)halogenid-Komplexe hergestellt werden konnten. Somit wurde die bekannte Koordinations- und Substitutionschemie von Urankomplexen erfolgreich auf Neptunium übertragen, was neue Möglichkeiten eröffnet, die grundlegenden Eigenschaften der frühen Actiniden mit einem breiteren Spektrum zugänglicher Verbindungen zu untersuchen. Im Rahmen dieser Arbeit wurden außerdem einige dieser grundlegenden Eigenschaften der Actinid-Amidinat-Komplexe mit Hilfe der kernmagnetischen Resonanzspektroskopie (NMR) untersucht. Zum ersten Mal wurde dabei die Abhängigkeit der paramagnetischen Hyperfeinverschiebung von der Anzahl der f-Elektronen für vierwertige Actinidkomplexe systematisch untersucht. Generell konnte dabei eine Zunahme der Pseudokontaktverschiebung mit zunehmender Anzahl von f-Elektronen nachgewiesen werden, mit der bemerkenswerten Ausnahme des [UF((S)-PEBA)3]-Komplexes. In diesem Komplex verändert das stark koordinierende Fluorid das Ligandenfeld des vierwertigen Urans, um ein umgekehrtes Verhalten der Pseudokontaktverschiebung zu induzieren. Dabei ist besonders hervorzuheben, dass dieses Verhalten nicht für den isostrukturellen Neptuniumkomplex [NpF((S)-PEBA)3] beobachtet wird, was auch durch quantenchemische Berechnungen bestätigt werden konnte. Dieses unerwartete Verhalten eines relativ einfachen vierwertigen Urankomplexes unterstreicht die Notwendigkeit einer tiefgreifenden Analyse der paramagnetischen Eigenschaften der Actiniden, um letztendlich ihre NMR-Spektren detaillierter interpretieren zu können. Zusammenfassend konnte während dieser Doktorarbeit gezeigt werden, dass Actiniden in allen untersuchten Oxidationszuständen starke Wechselwirkungen mit Stickstoff-Donor-Liganden eingehen, was zur Synthese einer Vielzahl unbekannter Actinidkomplexe führte. Die Bindungsanalyse der An–N-Bindung zeigte dabei unterschiedliche Kovalenzanteile, mit einem allgemeinen Trend zu höheren Anteilen für die weicheren Actinid bzw. Actinyl-Kationen (+III und +V). Mit Hilfe von Stickstoff-Donor-Liganden als weniger harte Donoren konnten somit die grundlegenden Eigenschaften und insbesondere die Koordinationschemie der Actiniden umfassend untersucht werden. Diese Untersuchungen sollten auch für weitere Studien über die Komplexierung von Actiniden mit Liganden in Betracht gezogen werden, welche naturstoffnahe funktionelle Gruppen tragen, um ihren Einfluss auf das Verhalten von Actiniden in der Umwelt detaillierter bewerten zu können. / The intriguing chemistry of the actinide elements lacks a fundamental understanding of their inherent properties even more than 80 years after the discovery of the first transuranium element, neptunium. This is for instance reflected in the relatively small number of structurally characterized actinide (8,790 hits) and especially transuranium complexes (537 hits) in the Cambridge Structural Database (as of 05/29/2020). The motivation behind this PhD work is thus the investigation of the coordination chemistry of the early actinides (i.e. thorium to plutonium) with organic ligand molecules to narrow this knowledge gap and to deduce their fundamental properties. To this end, this work has synthesized and characterized 36 new compounds, among those the first transuranium amidinate complexes and the first metal-organic neptunium complex possessing a Np–Br bond. These compounds have been characterized not only in the solid state, but wherever possible solution structures have been determined and high-level quantum chemical calculations have been performed to obtain a comprehensive picture of their structures and bonding situation. The thesis covers the most important oxidation states (+III to +VI) of the early actinides but mainly focuses on the tri- and tetravalent oxidation state owing to their accessibility for the early actinides and also for lanthanide and transition metals to compare their properties with. This work aims in particular to elucidate the potential participation of the actinides’ valence orbitals in the bonding to medium hard donor atoms like nitrogen in order to compare the actinide–nitrogen bond properties with their lanthanide and transition metal analogues. The degree of covalent interaction in actinide complexes plays an important role in the prediction of their behavior in naturally relevant systems and for separation processes in nuclear industry. The properties of the An–N bonds are studied by the synthesis of series of actinide complexes using amidinate ligands and are then compared to isostructural lanthanide and transition metal analogues. The analysis of the coordinative bond lengths together with an elucidation of the structures in solution is the key to understand the behavior of the actinide complexes. These investigations are supported by quantum chemical calculations for a detailed analysis of the complexes’ electronic structure. Two different types of amidinate ligands, N,Nʹ-Bis(isopropyl)-benzamidinate (iPr2BA) and (S,S)-N,Nʹ-Bis(1-phenylethyl)-benzamidinate ((S)-PEBA) are used to synthesize series of isostructural bis- and tris(amidinate) complexes. It is shown that the maximum accessible stoichiometry, i.e. the metal-to-ligand ratio, is determined by the ionic radius of the respective metal cation and the steric demand of the ligand itself. Hence, the relatively small tetravalent transition metal analogues titanium and hafnium exclusively form bis(amidinate) complexes with the used benzamidinates whereas tris(amidinate) complexes could be synthesized for the bigger tetravalent cations zirconium and cerium, as well as the actinides thorium, uranium, and neptunium. The difference between the coordination chemistry of the transition metals zirconium and hafnium with the used amidinate ligands is highly unexpected and could hold implications for future separation technologies. Two series of tris(amidinate) complexes [MIVCl(iPr2BA)3] and [MIVCl((S) - PEBA)3] have been synthesized and analyzed regarding their coordinative bond lengths. Single crystal X-ray diffraction (SC‑XRD) data indicates a predominantly ionic bonding interaction between the metals and the coordinating atoms, i.e. N and Cl, with the notable exception of the tetravalent cerium complex [CeCl((S)-PEBA)3] showing noticeably longer bond lengths than the isostructural actinide complex series. This points to a different binding behavior between the 4f and 5f elements which is investigated using quantum chemical calculations. Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis of the [MIVCl((S) - PEBA)3] complex series indicates a more covalent character of the Ce–N bonds compared to the actinide analogue thorium despite the longer than expected bond lengths. This unforeseen result emphasizes the power of quantum chemical calculations and reveals the strong impact of various crystal packing effects on the elucidation of bond properties. In addition, QTAIM and NBO analyses further reveal an increase of the covalent character when traversing the actinide series from thorium to uranium followed by a plateau from uranium to plutonium, but a different origin. For uranium the major contribution to the covalent character stems from the participation of 6d orbitals, whereas for plutonium the 5f contribution is dominant. Thus, unless expected otherwise, the prominent role of the 5f orbitals in the bonding to nitrogen donor ligands manifests itself only for tetravalent neptunium and plutonium and not for the lighter actinides. In contrast to the investigations of the [MIVCl((S)-PEBA)3] complex series, a detailed analysis of the binding properties of the trivalent actinide complexes of [MIII((S)-PEBA)3] type unequivocally confirms a higher degree of covalent character of the AnIII– N bonds compared to the lanthanide analogues by both, experimentally determined MIII – N bond lengths and quantum chemical calculations using QTAIM and NBO analyses. This difference in covalent character of tri- and tetravalent actinide complexes is expected to stem from the higher LEWIS acidity of the latter, but has been corroborated for the first time within this thesis using the same type of nitrogen donor ligand for both oxidation states. The results indicate a participation of the actinides’ valence electrons in the bonding and hence an increased overlap with the ligand orbitals especially for the trivalent actinides. The tetravalent actinide chloro tris(amidinate) complexes have been further investigated regarding their reactivity using (pseudo)halide exchange reactions yielding the corresponding fluoro, bromo, and azido complexes. It has to be pointed out, that this substitution chemistry is applied for the first time for a transuranium element, yielding unprecedented neptunium (pseudo)halide complexes. Thus, the well-known coordination and substitution chemistry of uranium complexes has been successfully expanded to neptunium which opens new opportunities to study the fundamental properties of the early actinides with a broader range of accessible compounds. Within this thesis some of these fundamental properties have been studied for the actinide amidinate complexes by means of nuclear magnetic resonance (NMR) spectroscopy. For the first time the dependence of the paramagnetic hyperfine shift on the number of f electrons has been investigated systematically for tetravalent actinide complexes. Generally, an increase of the hyperfine shift with increasing number of f electrons could be revealed with the remarkable exception of the [UF((S)-PEBA)3] complex. The strongly coordinating fluoride is altering the ligand field of the tetravalent uranium to induce an inverted behavior of the pseudocontact shift. Most remarkably, this behavior is not observed for the isostructural neptunium complex [NpF((S)-PEBA)3], which could be confirmed by multi-configurational quantum chemical calculations. This unexpected behavior of a relatively simple tetravalent uranium complex further underlines the need for a profound analysis of actinides’ paramagnetic properties to finally interpret their NMR spectra in more detail. In summary, during this PhD work it could be shown that nitrogen donor ligands show strong interactions with actinides in all investigated oxidation states. The binding shows varying degrees of covalency, evident in experimental findings and confirmed by computational results, with a general trend towards higher degrees of covalency for the softer actinide/actinyl cations (+III and +V). Nitrogen donor ligands as medium hard donors have shown the potential to investigate the fundamental properties and especially the coordination chemistry of the actinides comprehensively. These investigations should also be taken into account for further studies regarding the complexation of low-valent actinides with ligands bearing nature-derived functional groups to evaluate their influence on the behavior of actinide elements in the environment.
95

Synthesis and Coordination Behavior of Polyphosphorus Cations

Taube, Clemens 22 February 2022 (has links)
The objective of this work was to gain access to imidazoliumyl-substituted Pn-phosphorus compounds by utilizing dehalosilylation and condensation reactions and to subsequently explore the coordination chemistry of such compounds.
96

Development of Molecular Tools for Analysis and Imaging of ATP and Other Biomolecules Based on Coordination Chemistry / ATP等の生体分子の解析・イメージングのための配位化学に基づいた分子ツールの開発

Kurishita, Yasutaka 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18299号 / 工博第3891号 / 新制||工||1597(附属図書館) / 31157 / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 濵地 格, 教授 梅田 眞郷, 教授 森 泰生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
97

Studies on Functionalization of Porous Protein Crystals by Immobilizing Organometallic Complexes / 有機金属錯体導入による多孔性蛋白質結晶の機能化に関する研究

Tabe, Hiroyasu 25 May 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19182号 / 工博第4059号 / 新制||工||1626(附属図書館) / 32174 / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 北川 進, 教授 杉野目 道紀, 教授 濵地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
98

Studies on Polynuclear Metal Complexes and Low-Dimensional Mixed-Valence Halogen-Bridged Transition Metal Complexes Based on them / 多核金属錯体とこれをテンプレートとした低次元混合原子価ハロゲン架橋遷移金属錯体の研究

Hashiguchi, Ryota 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20201号 / 理博第4286号 / 新制||理||1616(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 竹腰 清乃理, 教授 島川 祐一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
99

Synthesis, Characterization, DNA Binding and Photocleavage Studies of a Di-Ruthenated Porphyrin

Wilson, Dale F. 05 June 2014 (has links)
No description available.
100

The Gas-Phase Ligand Exchange of Select Alkaline Earth and Transition Metal ß-diketonate Complexes

Fleming, Kathleen 13 June 2016 (has links)
No description available.

Page generated in 0.171 seconds