• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 76
  • 61
  • 16
  • 11
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 515
  • 217
  • 125
  • 75
  • 74
  • 74
  • 66
  • 63
  • 62
  • 59
  • 47
  • 42
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Control of structure and function of block copolymer nanoparticles manufactured in microfluidic reactors: towards drug delivery applications

Xu, Zheqi 26 April 2016 (has links)
This thesis includes three studies on related aspects of structure and function control for drug delivery block copolymer nanoparticles manufactured in segmented gas-liquid microfluidic reactors. First, the self-assembly of a series of photoresponsive poly(o-nitrobenzyl acrylate)-b-polydimethylacrylamide copolymers is conducted in the gas-liquid segmented microfluidic reactor at various flow rates. The resulting morphologies are found to be flow-variable and distinct from nanoparticles prepared off-chip by dropwise water addition. Photocleaving of the nanoparticles formed at different flow rates reveal flow-variable photodissociation kinetics. Next, we conduct a direct comparison between a commercially-available single-phase microfluidic mixer and the two-phase, gas-liquid segmented microfluidic reactor used in our group, with respect to nanoparticle formation from a typical block copolymer identified for drug delivery applications, polycaprolactone-b-poly(ethylene oxide). The two-phase chip yields morphologies and core crystallinities that vary with flow rate; however, the same parameters are found to be flow-independent using the single-phase mixer. This study provides the first direct evidence that flow-variable structure control is a unique feature of the two-phase chip design. Finally, we investigate structure and function control for paclitaxel (PAX)-loaded nanoparticles prepared from a series of poly(6-methyl caprolactone-co-ε-caprolactone)-block-poly(ethylene oxide) copolymers with variable 6-methyl caprolactone (MCL) content. For all MCL-containing copolymers, off-chip preparations form nanoparticles with no measurable crystallinity, although PAX loading levels are higher and release rates are slower compared to the copolymer without MCL. Both off-chip and on-chip preparations yield amorphous spheres of similar size from MCL-containing copolymers, although on-chip nanoparticles showed slower release rates, attributed to more homogeneous PAX distribution due to faster mixing. / Graduate
22

Self-assembled thin polymer film used for sensing application

Li, Feng January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Takashi Ito / Polymer thin films have played an important role in our everyday lives ranging from industrial to biomedical applications. In this thesis, two major topics based on polymer thin films including photopolymerized self-assembled monolayer and nanoporous thin films derived from diblock copolymer are discussed. In the first part of this thesis, a well-packed self-assembled monolayer with phosphonic acid as head group and diacetylenic functional group in the tail formed on AlGaN/GaN surface. According to water contact angle and UV/Vis absorption spectroscopy data, the stability of this self assembled monolayer on oxidized AlGaN/ GaN surface can be improved by photopolymerization of SAMs. The photopolymerization efficiency of the SAMs is effected by the position of polymerization functional group in the alkyl chain. In the second part of this thesis, PS-b-PMMA diblock copolymer thin films were prepared, characterized and applied as a template for electron transfer efficiency determination. The surface COOH group in nanoporous thin films derived from PS-b-PMMA were modified with ferrocene redox moieties having different linker lengths in the organic phase. The surface functionalization efficiency was quantitatively assessed by measuring the monovalent probe cations released from the surface COOH groups via cation-exchange processes using highly- sensitive analytical techniques including spectrofluorometry and inductively coupled plasma mass spectrometry (ICP-MS). The surface coverage of the redox moieties is an important parameter to determine the electron hopping efficiency. The electron propagation resulted from electron hopping across relatively large spacing that was controlled by the motion of anchored redox sites. The longer linker led to the larger physical displacement range of anchored ferrocene moieties, facilitating the approach of the adjacent ferrocene moieties within a distance required for electron self-exchange reaction. Faradic currents originating from redox-involved electron hopping through the ferrocene moieties anchored onto the insulator surface decreased with increasing the concentration of beta-cyclodextrin ([beta]-CD) in aqueous solution. The current could be recovered by adding redox-inactive guest molecules of [beta]-CD to the solution.
23

Synthesis of Polythiophene Copolymers on The Application of Organic Solar Cell

Wu, Chien-Chih 01 September 2010 (has links)
In this study, two kinds of homopolymers (PPDOT, and P3HT), and three different proportions of copolymers (PPDOT-co-P3HT=1:1, PPDOT-co-P3HT=3:1, and PPDOT-co-P3HT=1:3) have been synthesized successfully by Grignard metathesis. PDOT and 3HT, which are both of monomers, are electron-donating. Due to the fact that PDOT was caused larger than 3HT by pushing effect, it can change the conjugation length to be much longer, resulting in lower energy level of HOMO, and thus reduce energy gap of high molecular. These polymers possess optical bandgaps in the range of 1.908 to 1.922 eV. The desirable absorption attributes of these materials make them to be the excellent candidates for use in organic solar cells. In this study, the analysis and discussion of these polymers were measured by TGA, DSC, XRD, GPC, NMR, UV, PL, and AC-2 for thermal stability, crystallinity, structure and optical properties. From the XRD, materials of main chain ordered are well crystalline, which can increase the absorption of thiophene ring. By UV, we could find absorption region of infrared light increase that is beneficial to enhance ISC, but led to lower HOMO, and thus reduced VOC. However, the overall device power conversion efficiencies indicate that increasing ISC is much greater than decreasing VOC. Hence, power conversion efficiency increased. However, in PL, intensity of the emission is large, and it will cause components to quenching that lead to reduce its efficiency. We knew HOMO-LUMO energy level matching relations of polymer materials which were mixed with PCBM as the active layer of organic solar cells by UV-VIS and AC-2. From the instructions of device power conversion efficiency, because efficiency is not high, it causes the short circuit. The reason is (1) energy level can not match (2) the solubility of PPDOT is not very good, hence the film is not easy even. The way to improve is to identify a better solvent to increase its solubility.
24

Functionalization of Poly(Ethylene Oxide)-based Diblock Copolymer Vesicles

Kinnibrugh Garcia, Karym G. 2010 May 1900 (has links)
The principal goal of this research is to achieve the chemical labeling and surface modification of block copolymer vesicles (polymersomes) made from amphiphilic diblock copolymer Poly(butadiene-b-ethylene oxide) (PBd120- PEO89, MW 10400 g/mol) with the aim of developing possible drug carrier vehicles for controlled release of molecules triggered by stimuli-responsive environments. The terminal hydroxyl group of poly(ethylene oxide) (PEO), or poly(ethylene glycol) is converted into its corresponding carboxylic acid by a novel one-pot two-phase oxidation reaction. This regioselective and catalytic reaction assures the preservation of important structural characteristic of the block copolymers. Vesicles formed by a mixture of the carboxylate and unmodified block copolymer exhibit an increment in the critical aggregation concentration (CAC) value while the averaged vesicle size decreases demonstrating that the negative charges in the modified diblock copolymer disrupt the vesicle formation process. The carboxylated reactive intermediates are subsequently subjected to a covalent coupling reaction in organic solvent to replace the terminal hydroxyl of the PEO block. The obtained functionalized diblock copolymers are effectively incorporated into the vesicle bilayer. Also, surface density control in polymersomes of fluorescently modified diblock copolymers, synthesized by the amination reaction, is achieved. To demonstrate the ability of this polymersomes as carrier vehicles, a Noradrenaline functionalized vesicle is placed in closed contact with rat aortic smooth muscle cells (RASMC) using the micropipette aspiration technique. A distinctive increase in fluorescent intensity of cells is observed. It indicates that the drug molecule has been transported by the polymersome and internalized by the cell. In addition, diblock copolymers containing a disulfide moiety and a fluorophore are synthesized and studied through fluorescent microscopy. Vesicles are formed with this polymer and a decrease in fluorescent intensity is observed in the vesicle's bilayer after its exposure to a reductive environment. These results indicate that fluorophore molecules are successfully released into solution.
25

The Physical and Spectroscopic Study of a Series of Poly(3-hexyl thiophene) Homopolymers and Poly(3-hexyl thiophene)-block-Poly(2-hydroxyethyl methacrylate) Diblock Copolymers

Peng, Qiliang 31 March 2010 (has links)
In block-selective solvent, the rod-coil block copolymers can form various micellar structures. With block copolymers that contain a conjugated polymer block, the conformation of the conjugated polymer can be reflected by spectral changes in the solution. Therefore, it is of interest to study the relationship between the spectral changes and the nature of the conjugated polymer. The fundamental physical properties of poly(3-hexyl thiophene) (P3HT) were studied. Five P3HT samples with different molecular weights were used. We have determined the relationship between physical and spectral properties of this polymer and its molecular weight. In particular, we have found that the refractive index increments, the maximum absorbance wavelength, extinction coefficients, and the emission wavelengths, increase with molecular weight. Diblock copolymers of poly(3-hexyl thiophene)-block-poly(2-hydroxyethyl methacrylate) (P3HT-b-PHEMA) were also studied. The morphological and spectral changes of these block copolymers were studied at various stages of micelle formation in block selective solvents. The relationship between the volume fraction of the P3HT block and their physical and spectral properties were also discussed. / Thesis (Master, Chemistry) -- Queen's University, 2010-03-31 11:30:44.539
26

Polymolecular and Unimolecular Micelles of Triblock Copolymers

GAO, YANG 26 September 2011 (has links)
Reported in this thesis are the studies of micellar aggregates of four triblock copolymers and the unimolecular micelles of a triblock copolymer. The micelles were prepared from BCF and ACF copolymers. Here A, B, C, and F denote poly(acrylic acid), poly(tert-butyl acrylate), poly(2-cinnamoyloxylethyl methacrylate), and the liquid crystalline poly(perfluorooctylethyl methacrylate) block, respectively. At room temperature (21 oC) in solvents that were selective for the A or B blocks, three of the four copolymers formed exclusively cylindrical micelles regardless of their block ratios. Cylindrical micelles were formed because their geometries best accommodated the mesogen-ordering requirement of the core-forming F block, as supported by the results from wide angle X-ray scattering and differential scanning calorimetric studies. Mesogen-driven cylinder formation was further supported by the observation of ridges formed by collapsed coronal chains on the surfaces of dried cylinders. We also observed a morphological transformation from other micellar morphologies to cylindrical micelles at 70 oC, which is near the isotropic-to-smectic A phase transition temperature for the F blocks. This inter-conversion between the vesicular and cylindrical micelles of an ACF sample could be reversed repeatly by temperature cycling. These results provided additional evidence for the mesogen-driven micellization hypothesis. Unimolecular micelles were prepared from CDC triblock copolymers, where D and C denote poly(dimethylaminoethyl methacrylate) and poly(2-cinnamoyloxylethyl methacrylate), respectively. In selective solvents for the D block at high dilutions, the D chain formed a loop, and the terminal C blocks of the isolated unimer chain associated together as a globule, thus closing the loop and rendering a cyclic structure. Alternatively, the terminal C blocks formed individual globules, thus yielding a pompom-coil-pompom structure. To lock in these structures, the globules were photo-crosslinked. The D block chain was subsequently enlarged for AFM observation through a quaternization step, which increased the chain’s diameter and introduced cations to the chain. The semi-flexible thickened polymer chains and the globules were observed by AFM, confirming unambiguously the hypothesized architectures of the unimolecular micelles. The AFM images also allowed the quantification of the macrocyclic structures, and a correlation between the direct AFM results and determined from a traditional size exclusion chromatography technique. / Thesis (Ph.D, Chemistry) -- Queen's University, 2011-09-26 12:08:28.263
27

Synthesis and Characterization of Termosensitive Polymers / Síntesis y Caracterización de Polímeros Termosensibles

Rueda Sánchez, Juan, Zschoche, Stefan, Komber, Hartmut, Schmaljohnn, Dirk, Voit, Brigitte 25 September 2017 (has links)
Fueron sintetizados nuevos copolímeros injertados e hidrogeles termosensibles.Los copolímeros injertados fueron elaborados mediante la polimerización por apertura de anillo de 2-metil-oxazolina(MeOXA ) o de 2-etil-2-oxazolina (EtOXA) , iniciada porcopolímeros estadísticos de clorometilestiren o (CMS) y Nisopropilacrilamida (NIPAAm) usando el “Método Graftingfrom”1. Se obtuvo un rendimiento del 66 al 94%. Los polímerosfueron caracterizados vía Resonancia Magnética Nuclear (RMN),Cromatografía de Permeación en Gel (GPC) y CalorimetríaDiferencial de Barrido (DSC). La Temperatura de TransiciónConformaciona l (Lower Critical Solution Temperature-LCST)de los macroiniciadore s y copolímeros injertados fuedeterminada por los métodos de turbidez, RMN y DSC. Latemperatura de transición de los copolímeros injertados pudoser variada a través de la composición del macroiniciador yde los copolímeros injertados. Un incremento del comonómerohidrofóbico clorometilestireno en el macroiniciador disminuyesu LCST, mientras que en el copolímer o injertado, unincremento del contenido de los segmentos hidrofilicos depoli(metiloxazolina ) o de poli(etiloxazol ina) aumenta latemperatur a de transición. En el caso de los copolímerosinjertados con un contenido relativament e alto de largascadenas laterales de poli(2-alquil-2-oxazolinas), al alcanzar latemperatur a de transición LCST, en lugar de obtener laprecipitació n del material, se pueden formar agregadosmoleculares o micelas conteniendo un núcleo termosensible.Los hidrogeles fueron elaborados mediante la copolimerizaciónradicalar de un bismacromonómero de polimetiloxazolinay N-isopropilacrilamida . El rendimiento de la síntesis fue de60%. Estos hidrogeles fueron caracterizado s mediante laespectrometría por resonancia magnética nuclear (MAS-RMN)y su transición conformaciona l fue caracterizada mediante espectrometría RMN y mediciones del grado de transmisiónde la luz láser de helio-neon que pasa a través del hidrogel hinchado en agua. / New thermo-responsive graft copolymer s and hydrogelswere synthetized. The graft copolymer were synthesized bythe cationic ring-opening polymerizatio n of 2-methyl-2-oxazoline (MeOXA) , or 2-ethyl-2-oxazoline (EtOXA), respectively, initiated by the random copolymer s ofchloromethylstyren e (CMS) and N-isopropylacrylamide(NIPAAm) using the “grafting from” method with a yield of 66to 94%1. The polymers were characterized by NMR, GPC andDSC and the conformational transition (Lower Critical SolutionTemperature-LCST) of macroinitiators and graft copolymerswas determined by the turbidity and DSC measurements. Thetransition temperature of the graft copolymers could be finetunedthrough the composition of the macroinitiator and the graft copolymer. An increasing quantity of the hydrophobiccomonomer chloromethylstyrene in the macroinitiator lowered its LCST, while in the graft copolymer an increasing content of the hydrophilic segment of poly(2-methyl-2-oxazoline) orpoly(2-ethyl-2-oxazoline) raised the transition temperature. Forgraft copolymers with a high content of long poly(2-alkyl-2-oxazoline) grafts, stabilized aggregates or micelles with athermo-responsive core can be formed at LCST instead of precipitation of the material. Hydrogels were synthetized by the free radical copolymerization of a bismacromonomer of polymethyloxazolineand N-isopropilacrylamide. The yield was 60%. The hydrogelwere characterized by the NMR spectrometry (MAS-NMR) andits conformationa l transition was determined by NMRspectrometry and the degree of transmission of laser helioneonthrough the swelled hydrogel in water helium-neon.
28

Desenvolvimento e caracterização em blendas formadas por copolimero de etileno-propileno e PAni dopada / Development and characterization in blends of PP/PEcopolymer and doped PAni

Costa, Nelson Rodrigo 14 August 2018 (has links)
Orientador: João Sinezio de Carvalho Campos / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-14T21:10:09Z (GMT). No. of bitstreams: 1 Costa_NelsonRodrigo_M.pdf: 6493019 bytes, checksum: f667f5f51dcc90a9fe8da70609bb259d (MD5) Previous issue date: 2009 / Resumo: A proposta deste trabalho é desenvolver um material de fácil processamento de é boa condutividade elétrica. O método de preparação escolhido foi o de solução dos polímeros escolhidos, PAni dopada com ADBS e do copolímero de etileno/propileno, num solvente comum (Xileno) com a subseqüente evaporação total do solvente. Caracterizou-se os efeitos da PAni/ADBS (10%, 20%, 40% e 50%), do EPR e do anidrido maléico (MAH) juntamente com o peróxido como compatibilizantes. A análise termogravimétrica mostra que as blendas desenvolvidas apresentam três fases de perda de massa, sendo a segunda a principal. O ADBS degrada no segundo estágio e por conseqüência desdopa a PAni. Além disto, revela que as blendas com 50% de PAni apresentam uma temperatura de degradação ao redor de 335 ºC, a qual é superior ao polímero puro (295ºC). Isto leva à suposição de uma parcial compatibilização do EPR com a PAni/ADBS. A hipótese volta a ser sustentada pela análise de DSC, onde a Tg é influência pela concentração de EPR. As blendas apresentam mais de uma Tg, apontando para a imiscibilidade, mas a Tg da fase rica em PAni/ADBS da blenda com 20% de PAni/ADBS é de 65ºC, enquanto que na blenda com 50% é de 54ºC, o que levanta a suposição de uma miscibilidade parcial. O MAH e o peróxido não influenciaram nos resultados das análises térmicas. Ao passo que, a técnica analítica de infravermelho não identificou mudanças vibracionais nas moléculas das blendas em estudo, não suportando a hipótese de miscibilidade mesma que parcial. As imagens de MEV mostram uma blenda imiscível e uma estrutura de placas que evolui com o aumento da concentração de PAni/ADBS. Nota-se também uma evolução diferenciada da fase PAni/ADBS nas blendas com MAH e peróxido, levando a uma hipótese que estes compostos devem influenciar na morfologia da fase PAni/ADBS. A avaliação da condutividade elétrica superficial das blendas mostra que ela é proporcional à concentração da PAni/ADBS e que as blendas com 50% de PANi/ADBS apresentam apenas uma década de diferença de condutividade em relação a PAni/ADBS pura. Com base nos resultados obtidos o processamento via solução mostra ser um método promissor, proporcionando blendas de alta estabilidade térmica e boa condutividade. / Abstract: The proposal of this work is to develop a new material, which is easy to process and it has a good electrical conductivity. The process method chosen was the solution of the polymers, doped polyaniline with dodecilbenzeno sulfonic acid and the ethylene/propylene copolymer, in a common solvent (Xylene), follow by casting. The effect of PAni/ADBS (10%, 20%, 40% and 50%), EPR, maleic anhydride and peroxide were characterized. The thermo gravimetric analyses showed that the blends have three steps of mass loss, among them the second is the more important. The DBSA degrades in the second step, consequently, desdopes the PAni. Besides, the TGA pointed out that the blend with 50% of PAni/DBSA has a temperature of degradation around 3350C, which is higher than the PAni/DBSA polymer (2950C). Based on that, the hypothesis of partial compatibilization between EPR and PAni/DBSA was raised. The DSC analyses supported this assumption (the Tg is influenced by EPR concentration). The blends have more than one Tg, indicanting that the blends are immiscible, but the Tg of the PAni/DBSA phase with 20% of PAni/DBSA is 650C, while the blend with 50% is 540C. The MAH and the peroxide did not influence the results of the thermo analyses. Regards to infrared spectroscopy analyses, the technique did not identify any change in the vibrations of molecule of the developed blends, thence it follows that the miscibility hypothesis, even partial, is not supported by infrared. The SEM photographs showed more than one phase and plates structures. These plates structures are influenced by the MAH and by the peroxide. Perhaps, these substances influence the morphology of PAni/DBSA phase. The superficial electrical conductivity of the blends is proportional to PAni/DBSA concentration and the blends with 50% of PAni/DBSA have only one decade of difference in relation to PAni/DBSA polymer. / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
29

Effects of matrix properties on microscale damage in thermoplastic laminates under quasi-static and impact loading

Wafai, Husam 03 1900 (has links)
Thermoplastics reinforced with continuous fibers are very promising building materials for the auto industry and consumer electronics to reduce the weight of vehicles and portable devices, and to deliver a high impact tolerance at the same time. Polypropylene is an abundant thermoplastic, and its glass fibers composites make a valuable solution that is suitable for mass production. But the adoption of such composites requires a deep understanding of their mechanical behavior under the relevant loading conditions. In this Ph.D. work, we aim to understand the damage process in continuous glass fiberreinforced polypropylene in detail. We will focus in particular on developing an approach for microscale observation of damage during the out-of-plane loading process and will use these observations for both qualitative and quantitative evaluation of the composite. We will apply our approach to two kinds of polypropylene composites, one of them is specially designed to withstand impact. The comparison between the two types of composites at slow and fast loading cases will shed some light on the effect of the polymer properties on the behavior of composites under out-of-plane loading.
30

Polypropylene block copolymer synthesis by metathesis

liu, lei 08 July 2021 (has links)
No description available.

Page generated in 0.0284 seconds