• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-situ XPS Investigation of the Surface Chemistry of a Cu(I) Beta-Diketonate Precursor and the ALD of Cu2O

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links) (PDF)
This poster was presented in the Materials for Advanced Metallization (MAM) 2014 Conference in Chemnitz, Germany. Abstract: Atomic Layer Deposition (ALD) has emerged as an ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)], has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. However, still many questions are unanswered regarding the underlying surface chemistry of the precursor on many substrates, leading to different growth modes during ALD. In this work, the surface chemistry of [(nBu3P)2Cu(acac)] on SiO2 substrate is investigated by in-situ X-ray photoelectron spectroscopy (XPS), reporting vital information about the oxidation state and the atomic concentration after chemisorption on the substrates kept at different temperatures. The aim of the investigation is to understand the stepwise change in the precursor oxidation state with increasing substrate temperature and to identify the temperature limit for the thermal ALD with this Cu precursor on SiO2. For the experiments, the Cu precursor was evaporated on SiO2 substrates kept at temperatures between 22 °C and 300 °C. The measured C/Cu and P/Cu concentration indicated that most of the nBu3P ligands were released either in the gas phase or during adsorption (Fig. 1a). No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. Similarly, in this temperature range the Auger parameter calculated from Cu 2p3/2 and Cu L3VV spectra was found to be 360.0±0.2 eV, comparable to Cu(I) oxidation state [3]. However, disproportionation of the Cu precursor was observed above 200 °C, since C/Cu concentration ratio decreased and substantial metallic Cu was present on the substrate. Hence, 145 °C is the temperature limit for the ALD of Cu2O from this precursor, as the precursor must not alter its chemical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle, comparable to previous experiments. References: [1] T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, M. Hietschold, J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler, S. -F. Ding, L. Hofmann, R. Mothes, Q. Xie, S. Oswald, C. Detavernier, S. E. Schulz, X. -P. Qu, H. Lang, T. Gessner, Microelectron. Eng., 88, 684 (2011). [3] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. González Elipe, J. Phys. Chem. B, 106, 6921 (2002).
2

In-situ XPS Investigation of the Surface Chemistry of a Cu(I) Beta-Diketonate Precursor and the ALD of Cu2O

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links)
This poster was presented in the Materials for Advanced Metallization (MAM) 2014 Conference in Chemnitz, Germany. Abstract: Atomic Layer Deposition (ALD) has emerged as an ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)], has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. However, still many questions are unanswered regarding the underlying surface chemistry of the precursor on many substrates, leading to different growth modes during ALD. In this work, the surface chemistry of [(nBu3P)2Cu(acac)] on SiO2 substrate is investigated by in-situ X-ray photoelectron spectroscopy (XPS), reporting vital information about the oxidation state and the atomic concentration after chemisorption on the substrates kept at different temperatures. The aim of the investigation is to understand the stepwise change in the precursor oxidation state with increasing substrate temperature and to identify the temperature limit for the thermal ALD with this Cu precursor on SiO2. For the experiments, the Cu precursor was evaporated on SiO2 substrates kept at temperatures between 22 °C and 300 °C. The measured C/Cu and P/Cu concentration indicated that most of the nBu3P ligands were released either in the gas phase or during adsorption (Fig. 1a). No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. Similarly, in this temperature range the Auger parameter calculated from Cu 2p3/2 and Cu L3VV spectra was found to be 360.0±0.2 eV, comparable to Cu(I) oxidation state [3]. However, disproportionation of the Cu precursor was observed above 200 °C, since C/Cu concentration ratio decreased and substantial metallic Cu was present on the substrate. Hence, 145 °C is the temperature limit for the ALD of Cu2O from this precursor, as the precursor must not alter its chemical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle, comparable to previous experiments. References: [1] T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, M. Hietschold, J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler, S. -F. Ding, L. Hofmann, R. Mothes, Q. Xie, S. Oswald, C. Detavernier, S. E. Schulz, X. -P. Qu, H. Lang, T. Gessner, Microelectron. Eng., 88, 684 (2011). [3] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. González Elipe, J. Phys. Chem. B, 106, 6921 (2002).
3

Thermal Oxidation Strategies for the Synthesis of Binary Oxides and their Applications

Shinde, Satish Laxman January 2014 (has links) (PDF)
Binary oxides constitute an outstanding class of functional materials with potential applications in many fields such as catalysis, gas sensing, field emission, solar cells, photodetection, etc. Due to the difference in their physical/chemical properties, different oxides have been explored for different applications. For examples, SnO2, Cr2O3 and ZnO are being explored for gas sensing due to their high adsorption capacity for volatile gases, ZnO, Cu2O etc. are being explored in solar cells because of high adsorption coefficient in UV/visible region and so on. Various techniques are available for synthesis of binary oxides and tuning their properties. Most of the physical or chemical synthesis techniques are expensive, need high cost instruments and produces hazardous chemical waste. We need a simple, cost effective and ecofriendly techniques for the synthesis of binary oxides. In present work, a simple and facile thermal oxidation strategy has been employed for the synthesis of various binary oxides (Cu2O, GeO2 and ZnO). For example, CuO nanorods are obtained when Cu is heated around ~ 500 oC, which then heated in Ar atmosphere to obtain a film of porous Cu2O. Similarly, GeO2 with different morphologies and green-luminescent ZnO are obtained by controlling the reaction parameters. These oxides have then been explored for various applications including white light phosphors, catalysis for the degradation of dyes and non-contact thermometry. Overall, we present a thermal oxidation strategy for the synthesis of various binary oxides and explore potential applications in various fields.

Page generated in 0.0334 seconds