• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-situ XPS Investigation of the Surface Chemistry of a Cu(I) Beta-Diketonate Precursor and the ALD of Cu2O

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links) (PDF)
This poster was presented in the Materials for Advanced Metallization (MAM) 2014 Conference in Chemnitz, Germany. Abstract: Atomic Layer Deposition (ALD) has emerged as an ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)], has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. However, still many questions are unanswered regarding the underlying surface chemistry of the precursor on many substrates, leading to different growth modes during ALD. In this work, the surface chemistry of [(nBu3P)2Cu(acac)] on SiO2 substrate is investigated by in-situ X-ray photoelectron spectroscopy (XPS), reporting vital information about the oxidation state and the atomic concentration after chemisorption on the substrates kept at different temperatures. The aim of the investigation is to understand the stepwise change in the precursor oxidation state with increasing substrate temperature and to identify the temperature limit for the thermal ALD with this Cu precursor on SiO2. For the experiments, the Cu precursor was evaporated on SiO2 substrates kept at temperatures between 22 °C and 300 °C. The measured C/Cu and P/Cu concentration indicated that most of the nBu3P ligands were released either in the gas phase or during adsorption (Fig. 1a). No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. Similarly, in this temperature range the Auger parameter calculated from Cu 2p3/2 and Cu L3VV spectra was found to be 360.0±0.2 eV, comparable to Cu(I) oxidation state [3]. However, disproportionation of the Cu precursor was observed above 200 °C, since C/Cu concentration ratio decreased and substantial metallic Cu was present on the substrate. Hence, 145 °C is the temperature limit for the ALD of Cu2O from this precursor, as the precursor must not alter its chemical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle, comparable to previous experiments. References: [1] T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, M. Hietschold, J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler, S. -F. Ding, L. Hofmann, R. Mothes, Q. Xie, S. Oswald, C. Detavernier, S. E. Schulz, X. -P. Qu, H. Lang, T. Gessner, Microelectron. Eng., 88, 684 (2011). [3] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. González Elipe, J. Phys. Chem. B, 106, 6921 (2002).
2

Dépôts sélectifs d'oxydes de Titane et de Tantale par ajout d'un plasma de gravure dans un procédé PEALD pour application aux mémoires résistives / Selective deposition of TiO2 and Ta2O5 by adding plasma etching in PEALD process for resistive memories

Vallat, Rémi 05 October 2018 (has links)
Depuis l’apparition du circuit intégré, la performance des dispositifs semi-conducteurs est reliée à leur miniaturisation via le développement de procédés spécifiques tels que la lithographie. Néanmoins, la réduction des dimensions des dispositifs aux échelles nanométriques rend les étapes de patterning de plus en plus complexes et coûteuses (EUV, gestion de plusieurs passes de masque par couche et erreur de placement du/des masque(s) …) et pousse les fabricants de puces à se tourner vers des méthodes alternatives. Dans le but de réduire les coûts de fabrication des circuits intégrés, une approche bottom-up reposant sur l’utilisation de procédés de dépôts sélectifs est désormais envisagée, au détriment des approches conventionnelles top-down basées sur les procédés de lithographie. La solution de dépôt par couche atomique (ALD) est une technique appropriée pour le développement d’un procédé sélectif en raison de sa très grande sensibilité à la chimie de surface. Ce procédé est appelé dépôt sélectif de zone (ASD pour Area Selective Deposition). Il est basé sur un traitement spécifique d'activation ou de désactivation des réactions chimiques de surface avec le précurseur et/ou le réactif en mode ALD. Ces modifications de réactivité peuvent être obtenues en utilisant une couche de germination (activation) ou des groupes organiques tels que des monocouches auto-assemblées (SAM) (désactivation). Une autre voie est de tirer parti du retard inhérent à la croissance (ou temps d’incubation) sur différents substrats. Dans cette thèse, nous avons développé un nouveau procédé ASD d’oxyde métallique en combinant un dépôt de couche atomique et une étape de gravure qui permet de bloquer la croissance sur substrat à base de silicium (Si, SiO2 et SiN) versus un substrat métallique (TiN). L'étape de gravure est réalisée par addition de NF3 dans un plasma d'oxygène tous les n cycles du procédé PEALD. Nous avons utilisé ce procédé pour le dépôt de deux oxydes actuellement à l'étude pour les applications de mémoires résistives non-volatiles : Ta2O5 et TiO2. Le but des dépôts sélectifs pour l'application mémoire est de réaliser des points mémoires localisés métal/isolant/métal en intégration 3D verticale dite VRRAM. / At advanced nodes, lithography starts to dominate the wafer cost (EUV, managing multiple mask passes per layer and pattern placement error….). Therefore, complementary techniques are needed to continue extreme scaling and extend Moore’s law. Selective deposition and etching is one of them because they can be used to increase and enhance patterning capabilities at very low cost. From all the different deposition processes, Atomic Layer Deposition (ALD) is maybe the most suitable technique to develop a selective process due to its very good coverage property and its high surface sensitivity. This process is called Area Selective Deposition and is a selective deposition process for bottom-up construction It is usually based on a specific surface activation or deactivation treatment in order to activate or limit / inhibit chemical reactions with the ALD precursor / reactant. This surface modifications are usually obtained by using seed layer (activation) or organic groups such as Self-Assembled Monolayers (SAM) (deactivation). Another pathway for selective area deposition with ALD is to take advantage of the inherent substrate-dependent growth initiation: this is inherent selectivity based on difference of nucleation delay. In this thesis, we have proposed a new ASD process of thin oxide by combining atomic layer deposition and etching step (super-cycle) for a 3D Vertical RAM integration. This allows the selective growth of a thin oxide on a metal substrate without deposition on an insulator and/or a semi-conductor substrate(s). The etching step is achieved by NF3 addition in an oxygen plasma every n cycles of the PEALD process allowing (1) to etch the oxide layer on Si and/or SiO2 surface while keeping few nanometers of oxide on TiN substrate and (2) to passivate this two surfaces and to add a new incubation time on Si or SiO2 substrates. We used this process for the deposition of two oxides that are currently under study for non-volatile resistive memories applications: Ta2O5 and TiO2. The intention for memory application is to realize a crosspoint memory in Back-End level from a pattern area or a trench area without the photolithography step.
3

In-situ XPS Investigation of the Surface Chemistry of a Cu(I) Beta-Diketonate Precursor and the ALD of Cu2O

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links)
This poster was presented in the Materials for Advanced Metallization (MAM) 2014 Conference in Chemnitz, Germany. Abstract: Atomic Layer Deposition (ALD) has emerged as an ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)], has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. However, still many questions are unanswered regarding the underlying surface chemistry of the precursor on many substrates, leading to different growth modes during ALD. In this work, the surface chemistry of [(nBu3P)2Cu(acac)] on SiO2 substrate is investigated by in-situ X-ray photoelectron spectroscopy (XPS), reporting vital information about the oxidation state and the atomic concentration after chemisorption on the substrates kept at different temperatures. The aim of the investigation is to understand the stepwise change in the precursor oxidation state with increasing substrate temperature and to identify the temperature limit for the thermal ALD with this Cu precursor on SiO2. For the experiments, the Cu precursor was evaporated on SiO2 substrates kept at temperatures between 22 °C and 300 °C. The measured C/Cu and P/Cu concentration indicated that most of the nBu3P ligands were released either in the gas phase or during adsorption (Fig. 1a). No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. Similarly, in this temperature range the Auger parameter calculated from Cu 2p3/2 and Cu L3VV spectra was found to be 360.0±0.2 eV, comparable to Cu(I) oxidation state [3]. However, disproportionation of the Cu precursor was observed above 200 °C, since C/Cu concentration ratio decreased and substantial metallic Cu was present on the substrate. Hence, 145 °C is the temperature limit for the ALD of Cu2O from this precursor, as the precursor must not alter its chemical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle, comparable to previous experiments. References: [1] T. Waechtler, S. Oswald, N. Roth, A. Jakob, H. Lang, R. Ecke, S. E. Schulz, T. Gessner, A. Moskvinova, S. Schulze, M. Hietschold, J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler, S. -F. Ding, L. Hofmann, R. Mothes, Q. Xie, S. Oswald, C. Detavernier, S. E. Schulz, X. -P. Qu, H. Lang, T. Gessner, Microelectron. Eng., 88, 684 (2011). [3] J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. González Elipe, J. Phys. Chem. B, 106, 6921 (2002).
4

Simulation de la phase gazeuse des réactions tribochimiques des additifs phosphorés et soufrés

Mambingo Doumbe, Samuel 18 December 2012 (has links)
La maîtrise de l’additivation est l’un des enjeux majeurs de la formulation des lubrifiants, notamment pour l’industrie automobile. La formulation d’une huile est toutefois très complexe en raison du nombre important d’additifs et des nombreuses interactions possibles entre additifs, notamment entre les additifs de surface. Les phosphites organiques et les polysulfures organiques ont déjà montré leur efficacité en tant qu’additifs de surface. Toutefois malgré leur usage répandu dans les formulations des lubrifiants automobiles, peu d’études traitent des interactions pouvant avoir lieu entre ces deux types de composés. Ce travail de thèse a pour objectif la compréhension des mécanismes d’interaction (antagonisme/synergie) pouvant exister entre les phosphites organiques et les polysulfures organiques. Pour cela, une approche originale sur la lubrification par la phase gazeuse s’est avérée très pertinente. Le couplage du Tribomètre à Environnement Contrôlé (TEC) avec les systèmes d’analyses de surface XPS/Auger a permis d’analyser les tribofilms générés in situ et d’éviter ainsi toute contamination et/ou oxydation du tribofilm avant analyse. Les molécules choisies sont les additifs de lubrification industriels (polysulfures tertaires) à faibles poids moléculaires ou alors des molécules à faible poids moléculaires ayant les mêmes fonctions chimiques que les additifs usuels : trimethyl phosphite (TMPi), dimethyl phosphite (DMPi). L’étude des réactions des tribochimiques des molécules phosphorés a permis de mettre en évidence le rôle ambivalent du DMPi qui se comporte à la fois comme un phosphite pour former un phosphure de fer et comme un phosphate. Le mécanisme formation du phosphure de fer a peu être étayé par la réalisation de calculs ab initio sur l’adsorption dissociative du TMPi sur une surface de fer. Les TPS étudiés génèrent quant à eux des tribofilms à base disulfure de fer. Les mélanges binaires réalisés en phase gazeuse ont permis de mettre en évidence l’importance des rapports de concentrations des vapeurs introduites et du mode d’introduction des molécules dans le tribomètre. Les résultats obtenus en tribologie en phase gazeuse ont été corroborés par des essais complémentaires en phase liquide. / Mastering the addivation is one of the biggest issues for the lubricants formulation, especially in the automobile industry. However automotive lubricants are very complex systems due to the numerous additives mixed with base oils. Many interactions can occur between additives, especially between surface additives. Organic phosphites and organic polysulphides have already demonstrated their effectiveness as surface additives. However, despite their widespread use in the formulations of automotive lubricants, few studies deal with the interactions taking place between these two types of compounds. The aim of this study is to understand the interactions, antagonistic or synergetic effect between these kinds of additives using Gas Phase Lubrication (GPL) approach. A Environmental Controlled Tribometer (TEC) was used as a tool to simulate the interaction between organophosphate additives and polysulfurous additives. In situ surface analysis was performed in the tribofilm formed during friction using of X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy(AES) in order to avoid any oxidation or air contamination. The molecules selected for the study can be same as the additive like the TPS molecules which are widely used as lubricant additives. Howeverto simulate the phosphite chemical function of phosphite additives, we need to select smaller molecule having the same chemical function. These molecules are dimethyl phosphite (DMPi), trimethylphosphate (TMPi) for simulating the phosphite chemical function and organic polysulphides (TPS44and TPS32). The study of the tribochemical reactions of organic phopshites allowed to clearly characterise the ambivalence of DMPi, which can react like a phosphite and induce iron phosphide formation or react like a phosphate. Ab initio numerical simulation on TMPi dissociative adsorption was carried out to identify the reactions pathways leading to iron phosphide formation. The tribochemical reaction of TPS44 on metallic iron surface leads to the formation of iron disulphidebased tribofilm. The binary vapours mixtures studied by GPL allowed to clearly identify the importance of the vapour concentration ratio between phosphite and polysulphide. Liquid phase experiments were also carried out to confirm the trend observed in GPL approach.

Page generated in 0.0349 seconds