Spelling suggestions: "subject:"born -- devevelopment"" "subject:"born -- agentdevelopment""
1 |
Estimating daily green leaf area index for corn in VirginiaEbodaghe, Denis Abumere January 1986 (has links)
A model to predict the daily green leaf area index (GLAI) for corn has been developed for Indiana conditions. Using daily maximum and minimum temperatures the GLAI was predicted for the vegetative stage, reproductive and grain filling stage, and the leaf senescing stage of corn. Predictions of GLAI for corn can be made on a daily basis from the day corn is planted until it is harvested for grain.
The GLAI model was tested under Virginia conditions using green leaf area measurements collected from corn plants grown on Davidson silty clay loam, Davidson silty clay, and Mayodan sandy loam soils in the Piedmont region of the State. Maximum and minimum temperature data were also collected at the three sites. Measurements were made for two growing seasons using corn hybrid Pioneer 3369A, three plant population densities and two irrigation schedules. Short duration temperature data were also collected to compare with the daily maximum and minimum temperature data for the Mayodan site. Also a combination of soil temperature at 10 cm depth and air temperatures were used for the temperature functions accumulated from date of planting at the Mayodan site.
Results of this study show that the predicted and measured GLAI values compare favorably under irrigated conditions on the Davidson soil. The results were not as favorable on the irrigated corn on the Mayodan soil. When the corn is subjected to severe moisture stress on either soil, GLAI cannot be predicted with this model. Short duration temperature data resulted in a better prediction of GLAI on the Mayodan soil. When applying nitrogen fertilizer to the corn through the irrigation system through the grain filling stage, the measured GLAI values compared favorably with the predicted GLAI values. However, the application of nitrogen and sulfur fertilizer together resulted in GLAI being maintained above that predicted for a longer period of time during the grain filling stage before its decline. / Ph. D.
|
2 |
INVESTIGATION OF CORN YIELD IMPROVEMENT FOLLOWING CEREAL RYE USING STARTER NITROGEN FERTILIZERHouston L Miller (7830965) 20 November 2019 (has links)
Cereal rye (CR), the most common and effective nitrogen (N) scavenging
cover crop option in the Midwest, is often utilized in cropping systems to
reduce nitrate loss for environmental benefits. To increase environmental
efficiency in Midwest corn cropping systems, we must increase the overall
adoption of CR. However, due to the yield reduction potential (6%) for corn
planted after CR termination, CR is primarily recommended before soybean. To
increase CR adoption, we must develop adaptive fertilizer management practices
that achieve competitive grain yields relative to cropping systems where CR is
not adopted. Therefore, the objectives of this study are to determine (1) the
effect of CR and starter nitrogen rate on corn growth and nitrogen content. (2)
the optimum starter nitrogen rate to achieve agronomic optimum corn yield
following CR. (3) the impact of phosphorus (P) at starter on plant growth,
nitrogen content, and yield with the inclusion of CR. For our study, five
starter N rates were applied in a 5x5 cm band to both CR and non-CR plots,
concentrations ranged from 0-84 kg N ha<sup>-1 </sup>in 28 kg N ha<sup>-1</sup>
intervals. Total N applied was the same for each treatment, relative to its
location, and was split between starter N at planting and sidedress applied at
growth stage V6 relatively. Although CR termination took place at least two
weeks before planting, CR decreased corn grain yield at one of three locations
by an average of 8%, nitrogen recovery efficiency (NRE) by 27%, and R6 total N content
by 23%, relative to the conventional control (non-CR 0N), when no starter N was
applied. At one of three locations, starter N rates of 56 kg N ha<sup>-1</sup>,
56 kg N ha<sup>-1 </sup>plus 17 kg P ha<sup>-1</sup>, and 84 kg N ha<sup>-1</sup>
increased corn grain yield, in CR plots, and 56 kg N ha<sup>-1</sup> plus 17 kg
P ha<sup>-1</sup> increased corn grain yield in non-CR plots. Phosphorus increased
corn grain N content at growth stage R6 in one of three locations and did not
impact corn grain yield at all locations. We conclude that the inclusion of
starter N at planting has the potential to increase agronomic productivity in
CR corn cropping systems in soil environments with a high capacity to
mineralize soil N. However, further research is required to refine our starter
N results to find an optimum starter N rate to apply before planting corn
following CR.
|
Page generated in 0.0588 seconds