• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 1
  • Tagged with
  • 14
  • 14
  • 12
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Agglomération et hétéroagglomération des nanoparticules d'argent en eaux douces

Maillette, Sébastien 04 1900 (has links)
Les nanomatériaux sont une classe de contaminants qui est de plus en plus présent dans l’environnement. Leur impact sur l’environnement dépendra de leur persistance, mobilité, toxicité et bioaccumulation. Chacun de ces paramètres dépendra de leur comportement physicochimique dans les eaux naturelles (i.e. dissolution et agglomération). L’objectif de cette étude est de comprendre l’agglomération et l’hétéroagglomération des nanoparticules d’argent dans l’environnement. Deux différentes sortes de nanoparticules d’argent (nAg; avec enrobage de citrate et avec enrobage d’acide polyacrylique) de 5 nm de diamètre ont été marquées de manière covalente à l’aide d’un marqueur fluorescent et ont été mélangées avec des colloïdes d’oxyde de silice (SiO2) ou d’argile (montmorillonite). L’homo- et hétéroagglomération des nAg ont été étudiés dans des conditions représentatives d’eaux douces naturelles (pH 7,0; force ionique 10 7 à 10-1 M de Ca2+). Les tailles ont été mesurées par spectroscopie de corrélation par fluorescence (FCS) et les résultats ont été confirmés à l’aide de la microscopie en champ sombre avec imagerie hyperspectrale (HSI). Les résultats ont démontrés que les nanoparticules d’argent à enrobage d’acide polyacrylique sont extrêmement stables sous toutes les conditions imposées, incluant la présence d’autres colloïdes et à des forces ioniques très élevées tandis que les nanoparticules d’argent avec enrobage de citrate ont formées des hétéroagrégats en présence des deux particules colloïdales. / Nanomaterials are a class of contaminants that are increasingly found in the natural environment. Their environmental risk will depend on their persistence, mobility, toxicity and bioaccumulation. Each of these parameters will depend strongly upon their physicochemical fate (dissolution, agglomeration) in natural waters. The goal of this paper is to understand the agglomeration and heteroagglomeration of silver nanoparticles in the environment. Two different silver nanoparticles (nAg; citrate coated and polyacrylic acid coated) with a diameter of 5 nm were covalently labelled with a fluorescent dye and then mixed with colloidal silicon oxides (SiO2) and clays (montmorillonite). The homo- and heteroagglomeration of the silver nanoparticles were then studied in waters that were representative of natural freshwaters (pH 7.0; ionic strength 10-7 to 10-1 M of Ca2+). Sizes were followed by fluorescence correlation spectroscopy (FCS) and results were validated using enhanced darkfield microscopy with hyperspectral imaging (HSI). Results have demonstrated that the polyacrylic acid coated nAg was extremely stable under all conditions, including in the presence of other colloids and at high ionic strength, whereas the citrate coated nAg formed heteroagregates in the presence of both natural colloidal particles.
12

Diffusion dans un hydrogel : applications aux biocapteurs et optimisation de la technique de spectroscopie par corrélation de fluorescence (FCS)

Gendron, Pierre-Olivier January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
13

Quantifying diffusion in biofilms : from model hydrogels to living biofilms

Golmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion. For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect. The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
14

Chemical biology approaches to study toxin clustering and lipids reorganization in Shiga toxin endocytosis / Etude de la condensation et de la réorganisation des lipides lors de l’endocytose de la toxine de Shiga via une approche de biologie chimique

Gao, Haifei 12 November 2015 (has links)
La toxine bactérienne de Shiga se lie au glycosphingolipide (GSL) globotriaosylcéramide (Gb3) afin d’entrer par endocytose dans les cellules en utilisant une voie dépendante et indépendante de la clathrine. Dans la voie indépendante de la clathrine, la toxine de Shiga réorganise les lipides de la membrane de façon à imposer une contrainte mécanique sur la bicouche, conduisant ainsi à la formation de pic d’invagination d'endocytose profonds et étroits. Mécaniquement ce phénomène n’est pas encore compris, notamment il reste énigmatique, comment se traduisent les propriétés géométriques de l’agrégation des glycosphingolipides GSLS et de la toxine. Dans mon travail de thèse, via l’utilisation de la sous-unité B de la toxine de Shiga (STxB) comme un modèle, différentes espèces moléculaires de son récepteur Gb3 ont été synthétisés avec des structures délibérément choisis. Les études réalisées par imagerie de haute résolution et par la modélisation informatique ont permis d’élucider les contraintes mécano-chimique sous-jacente conduisant à une réorganisation efficace qui a pour résultat l’agrégation de la toxine et la réorganisation des lipides. En combinant des expériences de simulation sur ordinateur de dynamique des particules dissipatives (DPD) et des expériences sur des modèles de membranes cellulaires, nous avons fourni la preuve de l’induction d’une force de fluctuation-membrane, de type « force de Casimir », conduisant à l'agrégation des molécules de toxines associées à la membrane à des échelles de longueur mésoscoiques. Nous avons observé et mesuré, en outre la condensation lipidique induite par la toxine, quantitativement sur des monocouches de Langmuir en utilisant la réflectivité des rayons X (XR) et par la mesure de la diffraction des rayons X par incidence rasante (GIXD), fournissant ainsi une preuve directe de l'hypothèse que la toxine a le potentiel de réduire de façon asymétrique la surface moléculaire sur la partie membranaire exoplasmique, ce qui conduit à une déformation locale de la membrane. Durant ma thèse, nos efforts ont été consacrés à la réalisation de nouveaux glycosphinolipides (GSL) comme outils chimiques à visée biologique. Par ailleurs, une nouvelle stratégie de reconstitution de GSL fonctionnels sur la membrane cellulaire, basée sur une réaction de ligation de type « click » entre un glycosyl-cyclooctyne et un azido-sphingosine a été étudiée. Les résultats obtenus sur les cellules se sont avérés beaucoup moins efficace que ceux in vitro. Une poursuite de l'optimisation de cette méthodologie est actuellement en cours. Une sonde fluorescente du glycosphinolipide Gb3, marquée à l’Alexa Fluor 568 lui-même lié par l'intermédiaire d'un bras PEG-α à la position de la chaîne acyle, a été synthétisée. Cette sonde se lie à la STxB sur couche mince de TLC, mais pas sur des membranes modèles. D'autres améliorations sont discutées. / Bacterial Shiga toxins bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3) to enter cells by clathrin-dependent and independent endocytosis. In the clathrin-independent pathway, Shiga toxin reorganizes membrane lipids in a way such as to impose mechanical strain onto the bilayer, thus leading to the formation of deep and narrow endocytic pits. Mechanistically how this occurs is not yet understood, and notably how the geometric properties of toxin-GSLs complexes translate into function has remained enigmatic. In my thesis work, using the B-subunit of Shiga toxin (STxB) as a model, different molecular species of its receptor Gb3 have been synthesized with deliberately chosen structures, coupled with high resolution imaging and computational modeling, to understand the underlying mechano-chemical constraints leading to efficient toxin clustering and lipids reorganization. By combining dissipative particle dynamics (DPD) computer simulation and experiments on cell and model membranes, we provided evidence that a membrane fluctuation-induced force, termed Casimir-like force, drives the aggregation of tightly membrane-associated toxin molecules at mesoscopic length scales. Furthermore, toxin-induced lipid condensation was observed and measured quantitatively on Langmuir monolayers using X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), thereby providing direct evidence for the hypothesis that the toxin has the potential to asymmetrically reduce the molecular area of the exoplasmic membrane leaflet, leading to local membrane deformation. During my PhD, effort was also invested to develop new GSL tools applied to the biological setting. A novel strategy based on the Cu-free click reaction between glycosyl-cyclooctyne and azido-sphingosine was designed with the goal to functionally incorporate GSLs into cellular membranes. Following the synthesis work, click reactions have been performed in solution and on cells. Compared to the former, results on cells were far less efficient. Further optimization is currently ongoing. A fluorescently labeled Gb3 probe with Alexa Fluor 568 coupled via a PEG linker to the α-position of the acyl chain, was synthesized, to which STxB bound on TLCs, but not on model membranes. Further improvements are discussed.

Page generated in 0.2426 seconds