• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • Tagged with
  • 26
  • 26
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Techniques to Analyze Underdeposit Corrosion

Tinani, Suraj P. 20 July 2010 (has links)
No description available.
22

Aqueous Corrosion of 3D – Printed FeAl Alloys Containing 0 – 10 wt% Al / Vätskekorrosion för 3D – printade FeAl – legeringar innehållande 0 – 10 vikt% Al

Serti, Robin January 2024 (has links)
På senare år har efterfrågan på stålmaterial av låg vikt ökat, speciellt inom transportsektorn. Genom att addera Al till stål sänks densiteten vilket gör att FeAl-legeringar är ett lovande material för fordonskonstruktion. Vätskekorrosionsegenskaper undersöktes av 3D – printade FeAl prover som innehöll 0 – 10 vikt% Al och 0,1 vikt% Zr för att bestämma hur korrosionsegenskaperna förändrades med avseende på Al – innehållet. Korrosionsresistansen var i stor utsträckning beroende av huruvida en passiv film av Al2O3 bildades på ytan eller ej. Korrosionshastigheten bestämdes genom EIS – och PDP – analyser utförda i 3,5 vikt% NaCl-lösning samt genom viktförlusttester i 1 M HCl respektive 0,5 M H2SO4. Vidare karaktäriserades proverna genom XRF, XRD, EDS, SEM och optisk mikroskopi vilket bland annat visade på att samtliga prover var enfassystem samt att den kemiska sammansättningen var enligt förväntan. Vidare indikerade optisk mikroskopi och SEM att ett högre Al – innehåll resulterar i att proverna blir mer porösa. Elektrokemiska tester antyder att ett Al – innehåll om 10 vikt% förbättrade korrosionsresistansen. Detta antyder möjligen, men kan inte definitivt fastslås från de utförda experimenten, att det krävs 10 vikt% Al för att en passiv film som täcker hela materialytan ska bildas. Korrosionshastigheten var 7 – 10 gånger högre vid viktförlusttest jämfört med elektrokemiska test. Detta förklaras genom att den skyddande passiva filmen bröts ned under de sura förhållanden som viktförlusttesten utfördes i medan den passiva Al2O3 filmen kunde bestå i de pH – neutrala förhållanden som elektrokemiska test utfördes vid. Detta speglar att bildandet och stabiliteten av Al2O3-filmen är vitalt för att sänka korrosionshastigheten. / In recent years the demand for lightweight ferritic steels has increased, particularly for transport applications. The addition of Al lowers the density, hence making FeAl alloys promising materials for such constructions. Aqueous corrosion properties of 3D – printed FeAl samples ranging from 0 – 10 wt% Al and containing 0.1 wt% Zr were investigated to determine how the Al content affects the corrosion resistance. The corrosion rate was found to greatly depend on the formation and stability of a protective passive film of Al2O3 forming on the material surface. A corrosion rate was obtained via EIS and PDP in 3.5 wt% NaCl as well as via weight loss testing in 1 M HCl and 0.5 M H2SO4. Additionally, XRF, XRD, EDS, SEM and optical microscopy tests were carried out to characterize the samples. XRF and EDS confirmed that the elemental composition of the samples was as expected and XRD indicated that all samples were single phase systems. Furthermore, optical microscopy and SEM indicated that higher Al content makes the samples more porous. Electrochemical testing indicated that addition of 10 wt% Al greatly improves the corrosion properties suggesting that it may require 10 wt% Al to form a passive film that covers the whole surface, although this cannot be said for certain from these experiments. Moreover, the corrosion rate was 7 – 70 times lower during electrochemical testing compared to weight loss testing, in which the passive film breaks down due to the acidic conditions. This emphasizes that the stability of the Al2O3 film is vital for slowing down the corrosion rate of FeAl alloys.
23

Corrosion behaviour of fly ash-reinforced aluminum-magnesium alloy A535 composites

Obi, Emenike Raymond 30 September 2008
The corrosion behaviour of cast Al-Mg alloy A535 and its composites containing 10 wt.% and 15 wt.% fly ash, and 10 wt.% hybrid reinforcement (5 wt.% fly ash + 5 wt.% SiC) was investigated using weight-loss and electrochemical corrosion tests, optical microscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The tests were conducted in fresh water collected from the South Saskatchewan River and 3.5 wt.% NaCl solution at room temperature. The pH of the salt solution varied from 3 to 9. For comparison, two other aluminum alloys, AA2618 and AA5083-H116, were tested in the same electrolytes. The results of the weight-loss corrosion test showed that unreinforced A535 alloy had a lower corrosion rate in fresh water and seawater environments than the composites at all the tested pH values. The corrosion rate of the composites increased with increasing fly ash content. As expected, the corrosion rates of A535 alloy and the composites tested in fresh water were lower than those in salt solution. The results of the potentiodynamic and cyclic polarization electrochemical tests showed that the corrosion potential (Ecorr) and pitting potential (Epit) of the alloy were more positive than those of the composites. The corrosion and pitting potentials of the composites became more negative (active) with increasing fly ash content. The composites showed more positive (noble) repassivation or protection potential (Erp) than the matrix alloy, with the positivity increasing with fly ash content. Analysis of the electrochemical noise data showed that pitting corrosion was the dominant mode of corrosion for the alloy in 3.5 wt.% NaCl solution. Optical microscopy and SEM revealed that Mg2Si phase and Al-Mg intermetallics corroded preferentially to the matrix. The EDS data indicated that the protective oxide film formed on A535 contained Al2O3 and MgO.
24

Corrosion behaviour of fly ash-reinforced aluminum-magnesium alloy A535 composites

Obi, Emenike Raymond 30 September 2008 (has links)
The corrosion behaviour of cast Al-Mg alloy A535 and its composites containing 10 wt.% and 15 wt.% fly ash, and 10 wt.% hybrid reinforcement (5 wt.% fly ash + 5 wt.% SiC) was investigated using weight-loss and electrochemical corrosion tests, optical microscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The tests were conducted in fresh water collected from the South Saskatchewan River and 3.5 wt.% NaCl solution at room temperature. The pH of the salt solution varied from 3 to 9. For comparison, two other aluminum alloys, AA2618 and AA5083-H116, were tested in the same electrolytes. The results of the weight-loss corrosion test showed that unreinforced A535 alloy had a lower corrosion rate in fresh water and seawater environments than the composites at all the tested pH values. The corrosion rate of the composites increased with increasing fly ash content. As expected, the corrosion rates of A535 alloy and the composites tested in fresh water were lower than those in salt solution. The results of the potentiodynamic and cyclic polarization electrochemical tests showed that the corrosion potential (Ecorr) and pitting potential (Epit) of the alloy were more positive than those of the composites. The corrosion and pitting potentials of the composites became more negative (active) with increasing fly ash content. The composites showed more positive (noble) repassivation or protection potential (Erp) than the matrix alloy, with the positivity increasing with fly ash content. Analysis of the electrochemical noise data showed that pitting corrosion was the dominant mode of corrosion for the alloy in 3.5 wt.% NaCl solution. Optical microscopy and SEM revealed that Mg2Si phase and Al-Mg intermetallics corroded preferentially to the matrix. The EDS data indicated that the protective oxide film formed on A535 contained Al2O3 and MgO.
25

Thermodynamics and Kinetics of Hydrogen Sulfide Corrosion of Mild Steel at Elevated Temperatures

Gao, Shujun 01 October 2018 (has links)
No description available.
26

The Effect of Salt Concentration on Aqueous Strong Acid, Carbon Dioxide, andHydrogen Sulfide Corrosion of Carbon Steel

Madani Sani, Fazlollah January 2021 (has links)
No description available.

Page generated in 0.1449 seconds