• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasticité des représentations corticales motrices après accident vasculaire cérébral / Plasticity of motor cortical representations following stroke

Ahdab, Rechdi 12 November 2010 (has links)
Dans les suites d'un accident vasculaire moteur (AVC), il existe une réorganisation des cartes de représentation corticale des territoires musculaires pouvant intéresser aussi bien le cortex moteur primaire (CMP) que le cortex prémoteur (CPM) de l'hémisphère cérébral atteint. La contribution de ces deux aires à la plasticité corticale post-AVC est loin d'être bien définie. Notre objectif était d'étudier les modifications de cartographie corticale motrice, notamment au niveau du CMP et du CPM, et leur implication dans la récupération fonctionnelle post-AVC. Dans ce but nous avons utilisé une technique de stimulation magnétique transcrânienne (SMT) guidée par l'imagerie (neuronaviguée). Les limites anatomiques des aires corticales et l'existence de repères anatomiques fiables dans différentes régions d'intérêts ont été définies dans un premier temps. Puis nous avons établi la cartographie normale des représentations corticales motrices dans un groupe de sujets sains, notamment au moyen de cartes « probabilistes » d'obtention de réponses motrices à la SMT qui prennent en compte les variabilités interindividuelles. Nous avons ensuite étudié les modifications de ces représentations dans un groupe de patients ayant des séquelles de lésion vasculaire des régions corticales motrices. Enfin, nous avons effectué un travail prospectif de suivi cartographique d'un groupe de patients ayant présenté un AVC moteur. Dans cette dernière partie, l'analyse des données cliniques et de SMT obtenues à la phase aigüe et à trois mois de l'AVC nous a permis de caractériser les modifications anatomo-fonctionnelles corticales qui accompagnent la régression du déficit moteur, supportant en particulier le rôle central du CMP de l'hémisphère lésé. En conclusion, nous proposons des modèles d'organisation neuronale expliquant le fonctionnement du cortex moteur chez le sujet sain ainsi que la récupération motrice après une lésion partielle du CMP. / Following stroke, reorganization of the motor cortical maps takes places and involves both the primary motor cortex (M1) and the premotor cortex (PMC) on the affected hemisphere. The relative contribution of each of these two cortical areas in the process of post-stroke plasticity and motor recovery remains uncertain. The present project was designed to study the cortical changes that follow a motor stroke, namely those involving M1 and the PMC, and their implications for motor recovery. For this purpose we used MRI-guided (neuronavigated) transcranial magnetic stimulation (TMS). First, we defined the anatomical limits of the cortical areas and the reliable cortical landmarks within each region of interest. We then defined a normal motor map in a group of healthy subjects. Our “probabilistic” map was based on the probability of obtaining motor responses in a given area and therefore accounted for inter-subject variability of motor representations. Thereafter we studied the modifications of the motor cortical representations in a group of patients having recovered from a motor stroke. Finally, we prospectively followed a group of patients presenting with a motor stroke. By comparing the neurophysiological and clinical data at admission and three months later, we were able to characterize the anatomo-functional cortical changes that accompany motor recovery following stroke. Our results are consistent with a major role of M1 in motor recovery. To conclude, we propose a model of how the motor cortex works in healthy subjects and during post-stroke recovery process.
2

Planification de la direction et de l'amplitude des mouvements d'atteinte : études psychophysique et neurophysiologique

Messier, Julie 08 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Les travaux présentés dans cette thèse portent sur les mécanismes centraux impliqués dans la planification de la direction et de l'amplitude d'atteintes manuelles vers des cibles visuelles. Les résultats de plusieurs études psychophysiques suggèrent que le système nerveux central utilise une règle générale d'organisation qui consiste à planifier la direction et l'amplitude d'atteintes manuelles par l'intermédiaire de deux canaux de traitement indépendants. Nous avons évalué cette hypothèse en testant l'effet de différentes conditions sensorimotrices sur la nature des erreurs de direction et d'amplitude d'atteintes manuelles. Un système d'analyse de mouvement (Optotrak) a permis revaluation des erreurs produites lors d'atteintes manuelles vers des cibles visuelles. Sept sujets ont exécuté des mouvements d'atteintes vers des cibles situées à 5 distances différentes le long de 5 directions différentes dans deux conditions expérimentales. Dans la tâche l, les sujets devaient orienter le regard vers une cible visuelle présentée sur un plan horizontal, puis fermer les yeux, et effectuer un pointage manuel en direction de cette cible. Dans la tâche 2, les pointages manuels étaient effectués vers les mêmes positions spatiales que dans la tâche l, mais, les cibles étaient présentées sur un plan vertical. Dans ces deux tâches, les erreurs variables de distance ont été plus grandes que les erreurs variable de direction. Cependant, dans la tâche 2, ces erreurs variables ont présenté une gradation différente en fonction de l'amplitude des mouvements. Cette influence différente de la nature des transformations sensorimotrices sur les erreurs variables de direction et d'amplitude d'atteintes manuelles supporte l'hypothèse que le SNC planifie ces deux paramètres par des canaux de traitement distincts. Une analyse subséquente a porté sur une prédiction de cette conclusion. Si les patrons dans la variabilité finale des pointages manuels reflètent les processus de planification motrice qui précèdent l'initiation des mouvements, ces derniers devraient présenter une étroite correspondance avec les patrons dans la variabilité initiale d'atteintes manuelles. L'analyse comparée des distributions des positions spatiales des sommets d'accélération et de vitesse ainsi que des points finaux d'atteintes manuelles a montré que les positions finales ne sont pas entièrement déterminées lors de l'initiation des mouvements suggérant que la planification et l'exécution ne sont pas des étapes sérielles strictes. Cependant, l'indépendance de la variabilité spatiale de direction et d'amplitude le long des trajectoires de mouvements a suggéré une planification indépendante de ces paramètres au cours du temps. Une approche neurophysiologique a été utilisée afin d'évaluer les fondements neuronaux des canaux de traitement indépendants par lesquels la direction et l'amplitude des mouvements d'atteintes sont planifiées. L'activité de 162 cellules du cortex prémoteur dorsal (PMd) a été enregistrée dans 2 hémisphères d'un singe rhésus alors qu'il effectuait des mouvements d'atteinte vers 24 cibles visuelles situées à 3 différentes distances le long de 8 directions différentes. Dans cette tâche expérimentale, un indice visuospatial présenté durant 500 ms indique la position vers laquelle une atteinte manuelle devait être dirigée après une période de délais (l 000-2500 ms). Ensuite, un deuxième indice (visuel, non-spatial) donne l'instruction au singe d'initier un mouvement en direction de la position mémorisée de la cible. Durant la présentation de la cible, l’activité des cellules individuelles de PMd est préférentiellement liée à la direction du mouvement à produire. Ensuite, au cours des événements successifs, elle montre une augmentation graduelle de la modulation en fonction de la distance de la cible. Les fréquentes interactions entre l'encodage de la direction et de l'amplitude dans la décharge de cellules individuelles de PMd suggère que les canaux de traitement pour la planification de la direction et de l'amplitude n'impliquent pas deux populations distinctes de cellules dans le cortex PMd. L'augmentation progressive de la convergence de l'expression de ces paramètres au cours du temps pourrait refléter une représentation intermédiaire interposée entre les canaux de traitement indépendants et un code approprié pour la spécification éventuelle des forces et de l'activité musculaire.
3

Étude du cortex prémoteur et préfrontal lors de la prise de décision pendant l'intégration temporelle des informations

Coallier, Émilie 05 1900 (has links)
Une variété de modèles sur le processus de prise de décision dans divers contextes présume que les sujets accumulent les évidences sensorielles, échantillonnent et intègrent constamment les signaux pour et contre des hypothèses alternatives. L'intégration continue jusqu'à ce que les évidences en faveur de l'une des hypothèses dépassent un seuil de critère de décision (niveau de preuve exigé pour prendre une décision). De nouveaux modèles suggèrent que ce processus de décision est plutôt dynamique; les différents paramètres peuvent varier entre les essais et même pendant l’essai plutôt que d’être un processus statique avec des paramètres qui ne changent qu’entre les blocs d’essais. Ce projet de doctorat a pour but de démontrer que les décisions concernant les mouvements d’atteinte impliquent un mécanisme d’accumulation temporelle des informations sensorielles menant à un seuil de décision. Pour ce faire, nous avons élaboré un paradigme de prise de décision basée sur un stimulus ambigu afin de voir si les neurones du cortex moteur primaire (M1), prémoteur dorsal (PMd) et préfrontal (DLPFc) démontrent des corrélats neuronaux de ce processus d’accumulation temporelle. Nous avons tout d’abord testé différentes versions de la tâche avec l’aide de sujets humains afin de développer une tâche où l’on observe le comportement idéal des sujets pour nous permettre de vérifier l’hypothèse de travail. Les données comportementales chez l’humain et les singes des temps de réaction et du pourcentage d'erreurs montrent une augmentation systématique avec l'augmentation de l'ambigüité du stimulus. Ces résultats sont cohérents avec les prédictions des modèles de diffusion, tel que confirmé par une modélisation computationnelle des données. Nous avons, par la suite, enregistré des cellules dans M1, PMd et DLPFc de 2 singes pendant qu'ils s'exécutaient à la tâche. Les neurones de M1 ne semblent pas être influencés par l'ambiguïté des stimuli mais déchargent plutôt en corrélation avec le mouvement exécuté. Les neurones du PMd codent la direction du mouvement choisi par les singes, assez rapidement après la présentation du stimulus. De plus, l’activation de plusieurs cellules du PMd est plus lente lorsque l'ambiguïté du stimulus augmente et prend plus de temps à signaler la direction de mouvement. L’activité des neurones du PMd reflète le choix de l’animal, peu importe si c’est une bonne réponse ou une erreur. Ceci supporte un rôle du PMd dans la prise de décision concernant les mouvements d’atteinte. Finalement, nous avons débuté des enregistrements dans le cortex préfrontal et les résultats présentés sont préliminaires. Les neurones du DLPFc semblent beaucoup plus influencés par les combinaisons des facteurs de couleur et de position spatiale que les neurones du PMd. Notre conclusion est que le cortex PMd est impliqué dans l'évaluation des évidences pour ou contre la position spatiale de différentes cibles potentielles mais assez indépendamment de la couleur de celles-ci. Le cortex DLPFc serait plutôt responsable du traitement des informations pour la combinaison de la couleur et de la position des cibles spatiales et du stimulus ambigu nécessaire pour faire le lien entre le stimulus ambigu et la cible correspondante. / A variety of models of the decision-making process in many different contexts suggest that subjects sample, accumulate and integrate sensory evidence for and against different alternative choices, until one of those signals exceeds a decision criterion threshold. Early models assumed that this process is static and does not change during a trial or even between trials, but only between blocks of trials when task demands such as speed versus accuracy change. However, newer models suggest that the decision-making process is dynamic and factors that influence the evidence accumulation process might change both between trials in a block and even during a trial. This thesis project aims to demonstrate that decisions about reaching movements emerge from a mechanism of integration of sensory evidence to a decision criterion threshold. We developed a paradigm for decision-making about reach direction based on ambiguous sensory input to search for neural correlates of the decision-making process in primary motor cortex (M1), premotor cortex (PMd) and dorsolateral prefrontal cortex (DLPFc). We first tested several versions of the task with human subjects before developing a task (“Choose and Go”) that showed ideal behavior from the subjects to test our hypothesis. The task required subjects to choose between two color-coded targets in different spatial locations by deciding the predominant color of a central “decision cue” that contained different amounts of colored squares of the two target colors. The strength of the evidence was manipulated by varying the relative numbers of squares of the two colors. The response times and error rates both increased in parallel as the strength of the sensory evidence in the decision cue (its color bias) became increasingly weaker. Computational modelling showed that the choice behaviour of the subjects could be captured by different variants of the drift-diffusion model for accumulation of sensory evidence to a decision threshold. We then recorded cells from M1, PMd and DLPFc in 2 macaques while they performed the task. Behavioral data showed that response times and error rates increased with the amount of ambiguity of the decision cues. M1 cells discharged in correlation with movement onset and were not influenced by the ambiguity of the decision cues. In contrast, the discharge of PMd cells increased more slowly with increased ambiguity of the decision cues and took increasingly more time to signal the movement direction chosen by the monkeys. The changes in activity reflected the monkeys’ reach choices. These data support a role for PMd in the choice of reach direction. DLPFc data are preliminary but reveal a stronger effect of the color-location conjunction rule in the neuronal discharge than in PMd. Our conclusion is that PMd is involved in the evaluation of evidence for and against different alternatives and about target spatial location independent of the color of the targets. DLPFC neurons play a greater role in processing information about the color and location of the spatial targets and decision cue to resolve the color-location conjunction rule required to decide on the reach target direction.
4

The organization of motor maps in the human brain / L'organisation de plan moteur dans le cerveau humain

Song, Zheng 25 September 2015 (has links)
Ce travail s'intéresse à l'organisation fonctionnelle du système sensorimoteur. La somatotopie est une caractéristique essentielle de M1, mais l'organisation fonctionnelle des autres aires motrices (PM, SMA, et IPL) n'est pas encore clairement établie. Premièrement, nous avons exploré par IRMf l'organisation fonctionnelle sensorimotrice chez des sujets sains exécutant des mouvements simples. Nos résultats montrent que les représentations motrices sont organisées selon des synergies musculaires et qu'une organisation somatotopique, différente de celle de M1, existe dans l'IPL. Bien qu'elle fasse régulièrement l'objet de critiques, la DES est à la base de la plupart de nos connaissances sur le cortex moteur, que confirme les études en IRMf. Ainsi, en réponse au débat en cours, nous avons passé en revue les arguments récents confortant la confiance que nous pouvons accorder à la DES. Des études récentes concluent à l'implication du PPC dans l'intention motrice, mais le débat reste ouvert sur la relation entre intention et préparation motrices. Certains prétendent que l'intention serait le sous-produit de la préparation motrice, ne laissant aucune place à la volonté dans le contrôle moteur. Pour étudier cette question, nous avons mis en place une expérience comportementale, incluant des tâches de réaction simple et de Libet pour comparer les deux processus cognitifs. Nos résultats montrent que le temps de réaction entre intention interne et réaction motrice est égal à celui séparant commande externe et réaction motrice. Cela contredit donc l'affirmation selon laquelle la préparation motrice précèderait l'intention et donc que l'intention émergerait du processus d'intention motrice / In this thesis, I am interested in the functional organization of human cortical sensorimotor system. Somatotopy is the prominent structure of the functional organization in sensory and motor cortex. However, the structure of the functional organization in higher order motor area, such as IPL is little known. Therefore, in the first part, I study the functional organization of human sensory- and motor- related brain regions using fMRI, by guiding healthy subjects to perform simple repetitive movements of different body parts. Our results demonstrate that, 1) motor synergy is the neural basis represented in the motor cortex; and 2) somatotopic organization also exists in IPL but with different structure from that of sensorimotor cortex. Despite continuous criticism on DES, most of our primitive knowledge of the sensorimotor cortex comes from DES studies, and our fMRI result supports the findings of DES. In response to the ongoing debate on DES, in the second study, we review recent evidence to re-establish the confidence on DES. Accumulating evidence indicates that PPC is related to the emergence of motor intention. However, debate on the relation between motor intention and preparation never stops, some claims that motor intention is the byproduct from motor preparation, thus denying the volition of human motor control. Besides this complexity, we design a straightforward behavior experiment, including simple reaction task and Libet task, in order to compare the cognitive process of motor preparation and motor intention. Our result shows that RT from internal motor intention to motor output is equal to the RT from external cue to motor output, thus rejecting the possibility that motor preparation starts in advance of motor intention and doesn't support that motor intention arises from the process of motor intention
5

Potentiels de champ locaux lors d'une prise de décision à plusieurs facteurs

Lusignan, Thomas 08 1900 (has links)
Choisir quel mouvement effectuer est une fonction primordiale du système nerveux central. Comment ces décisions sont prises est encore sujet à débats. Une hypothèse traditionnelle pose qu’elles sont prises de façon sérielle, à l’aide de processus perceptifs qui alimentent un exécutif central, qui communique ensuite au système moteur quel mouvement effectuer. L’hypothèse alternative préférée par notre équipe est que les mouvements potentiels commencent à être préparés en parallèle et entrent en compétition pour les effecteurs. Dans le but de tester ces hypothèses, notre équipe a enseigné à un macaque une tâche de prise de décision motrice. Le sujet y est placé devant un écran où deux cibles apparaissent. Chacune a une valeur qui découle de deux caractéristiques : sa luminosité (BU pour bottom-up, information ascendante) et l’orientation d’une ligne qui la coupe comme une aiguille d’horloge (TD pour top-down, information descendante.) Le sujet choisit une des deux à l’aide d’un mouvement d’atteinte, et reçoit une récompense proportionnelle à sa valeur. Cette tâche permet de comparer plusieurs types d’essais : certains présentent une seule cible, une absence de choix, ou deux cibles identiques, un choix sans conséquence. D’autres ont une cible plus valable que l’autre, le choix est alors facile. On peut alors faire varier la caractéristique (BU ou TD) qui donne une plus grande valeur à la meilleure cible. Finalement, on peut montrer deux cibles de valeur égale, mais dont une tire sa valeur d’un bon score TD et l’autre, d’un bon score BU. Le sujet doit alors, en quelque sorte, choisir entre les caractéristiques. Pendant que le sujet exécute la tâche, on enregistre ses potentiels de champ locaux (LFP) à l’aide de deux réseaux d’électrodes déplaçables individuellement, l’un placé dans le cortex pariétal postérieur (PPC) et l’autre, dans le cortex prémoteur dorsal (PMd). L’analyse de ces données à l’aide de spectrogrammes, et une discussion des réactions spécifiques dans les bandes de fréquences alpha, bêta et gamma, sont présentées ici. / Choosing which movement to make is a primary function of the central nervous system. How these decisions are made is still a matter of debate. A traditional hypothesis posits that such decisions are made in a serial fashion: perceptual processes feed into a central executive, which then communicates to the motor system which movement to make. The alternative hypothesis preferred by our team is that potential movements begin to be prepared in parallel, and compete for effectors until a consensus forms in brain areas related to controlling the movements. In order to test these hypotheses, our team taught a macaque to perform a reach-based decision-making task. The subject is placed in front of a screen on which two targets appear. Each target has a value derived from two features: its brightness (BU, bottom-up information) and the orientation of a line that crosses it like a clock hand (TD, top-down information.) The subject freely chooses one of the two targets by reaching it, and then receives a reward proportional to its value. This task compares several types of trials: some show a single target, therefore no choice, or show two identical targets, which means the choice has no consequences. Other trials have one target that is more valuable than the other, which makes the choice easy. The feature which gives that better target a greater value can be either BU or TD. Finally, some trials show two targets of equal value, but one of them derives its value from a good TD score while the other derives its value from a good BU score. The subject must then choose between the features. While the subject performs the task, local field potentials (LFP) are recorded using two individually movable electrode arrays. One array is placed in the posterior parietal cortex (PPC) and the other, in the dorsal premotor cortex (PMd). The data thus obtained is analyzed using spectrograms, and a discussion of specific responses in the alpha, beta, and gamma frequency bands is presented here.
6

Contribution du cortex prémoteur à la locomotion entravée chez le chat

Fortier-Lebel, Nicolas 03 1900 (has links)
La locomotion est une composante fondamentale de la vie animale : elle permet l’accès continu aux ressources nécessaires à la survie ainsi que l’évitement de périls variés. Les milieux naturels comme anthropiques regorgent toutefois d’obstacles s’élevant contre notre progression. Pour l’humain et les autres mammifères terrestres naviguant principalement par la vision, le franchissement efficace de ces obstacles repose critiquement sur la capacité de modifier proactivement le positionnement et la trajectoire des pas en fonction des informations visuelles extraites durant leur approche. Au niveau du système nerveux, cette capacité implique un processus complexe où le traitement des signaux visuels reflétant les paramètres de l’obstacle spécifie un cours d’action sécurisant son franchissement, lequel est ultimement exécuté par des altérations précises à l’activité musculaire. Des études approfondies chez le chat, l’un des modèles animaux les plus développés et investigués vis-à-vis du contrôle locomoteur, ont présentement impliqué deux structures corticales dans ce processus. Le cortex pariétal postérieur contribuerait ainsi à déterminer la position relative de l’obstacle et le cortex moteur primaire serait central à l’exécution des modifications de la démarche. Cependant, notre compréhension du substrat neural impliqué dans la transformation sensorimotrice joignant ces deux étapes est extrêmement limitée. Plusieurs lignes d’évidences, particulièrement dérivées de travaux chez le primate investiguant le contrôle des mouvements volontaires du bras, pointent cependant vers une contribution potentiellement majeure du cortex prémoteur à cette fonction. Cette thèse entreprend de déterminer directement la contribution prémotrice aux modifications de la démarche. Deux études rapportent ainsi l’activité de neurones individuels enregistrés dans deux larges subdivisions du cortex prémoteur, les aires 6iffu et 4delta, chez le chat éveillé accomplissant librement une tâche de négociation d’obstacles sur tapis roulant. Ces études font état de changements d’activité distincts d’une subdivision à l’autre et corrélés à des aspects spécifiques de la tâche, incluant des changements préparatoires liés à l’approche finale de l’obstacle et d’autres liés à une ou plusieurs étapes des ajustements locomoteurs séquentiels entourant sa négociation. Une troisième étude investigue par microstimulation intracorticale la capacité des différentes subdivisions prémotrices du chat à modifier la démarche. Cette étude expose une variété de réponses électromyographiques complexes s’intégrant en phase avec la marche, où plusieurs subdivisions présentent des signatures distinctes d’effets multi-membres contrastant avec l’influence focale du cortex moteur primaire. Chacune de ces trois études est finalement complémentée d’investigations par traçage rétrograde de connexions anatomiques décisives à l’interprétation fonctionnelle des subdivisions investiguées. Ensemble, ces travaux soutiennent et précisent une contribution centrale du cortex prémoteur aux modifications de la démarche sous guidage visuel. D’une part, ils rapportent pour la première fois que l’activité neuronale de multiples subdivisions du cortex prémoteur reflète différentes étapes de la planification locomotrice stipulant les altérations à entreprendre à l’approche d’un obstacle et durant son franchissement. D’autre part, ils révèlent complémentairement que l’activation de ces subdivisions a le pouvoir d’influencer profondément la marche. Les données collectées soulignent finalement plusieurs points de comparaison entre les aires prémotrices du chat et du primate, suggérant un degré d’analogie fonctionnelle extensible à la locomotion humaine. / Locomotion is a fundamental component of animal life: it provides continuous access to the resources necessary for survival as well as the means to elude potential perils. However, both natural and built environments teem with obstacles impeding one’s progress. For humans and other terrestrial mammals navigating primarily through vision, efficiently negotiating these obstacles critically requires the capacity to proactively adapt the positioning and trajectory of each step on the basis of visual information extracted during their approach. In the nervous system, this capacity involves a complex process through which the integration of visual signals reflecting the parameters and location of an obstacle specifies a course of action to ensure its negotiation, Extensive studies in the cat, one of the most common models used to study the neural mechanisms involved in the control of locomotion, have currently implicated two cortical structures to this process. The posterior parietal cortex is suggested to contribute to the determination of the obstacle’s relative position (with respect to the body) while the primary motor cortex is central to the execution of the gait modifications. However, our comprehension of the neural substrate implicated in the sensorimotor transformation linking these defined stages is extremely limited. Several lines of evidence, predominantly derived from work in the primate investigating the voluntary control of arm movements, nonetheless point towards a potentially major contribution of the premotor cortex to this function. This thesis sets out to directly determine the premotor contribution to the control of gait modifications. Two studies report the activity of individual neurons recorded in two large subdivisions of premotor cortex, areas 6iffu and 4delta, in awake cats freely performing an obstacle negotiation task on treadmill. These studies describe distinct changes in activity across subdivisions that correlate with specific aspects of the task, including preparatory changes related to the final approach of the obstacle and others related to one or more stages of the sequential locomotor adjustments surrounding its negotiation. A third study used intracortical microstimulation to investigate the capacity of different premotor subdivisions of the cat to modify gait. This study reveals a variety of complex electromyographic responses that are integrated into the gait cycle. Moreover, several subdivisions show distinct signatures of multi-limb effects that contrast with the focal influence of the primary motor cortex. Each of these three studies is finally complemented by retrograde tracing investigations of anatomical connections critical to the functional interpretation of the subdivisions examined. Together, these studies support and clarify a central contribution of the premotor cortex to the modification of gait under visual guidance. We report for the first time that the neural activity of multiple subdivisions of the premotor cortex reflects different stages of the locomotor plan specifying the gait alterations to perform during the approach and crossing of an obstacle. In addition, we reveal that activation of these subdivisions has the power to profoundly influence walking. The data collected finally highlight several points of comparison between the premotor areas of the cat and the primate, suggesting a degree of functional analogy extensible to human locomotion.
7

Bihemispheric reorganization of neuronal activity during hand movements after unilateral inactivation of the primary motor cortex

Moreau-Debord, Ian 05 1900 (has links)
Le cortex moteur primaire (M1) est souvent endommagé lors des lésions cérébrales telles que les accidents vasculaires cérébraux. Ceci entraîne des déficits moteurs tels qu'une perte de contrôle des membres controlatéraux. La récupération des lésions M1 s'accompagne d'une réorganisation hémodynamique dans les zones motrices intactes des deux hémisphères. Cette réorganisation est plus prononcée dans les premiers jours et semaines qui suivent la lésion. Toutefois, nous avons une compréhension limitée de la réorganisation neuronale rapide qui se produit dans ce réseau moteur cortical complexe. Ces changements neuronaux nous informent sur l’évolution possible de la plasticité subaiguë impliquée dans la récupération motrice. Par conséquent il était grand temps qu’une caractérisation de la réorganisation rapide de l'activité neuronale dans les régions motrices des deux hémisphères soit entreprise. Dans cette thèse nous avons exploré l'impact d'une lésion corticale localisée, unilatérale et réversible dans M1 sur l'activité neuronale des zones motrices des hémisphères ipsi et contralésionnel lorsque des primates non humains ont effectués des mouvements d’atteinte et de saisie. Notre modèle d'inactivation nous a permis d'enregistrer en continu des neurones isolés avant et après l'apparition des déficits moteurs. Dans une première étude, la réorganisation rapide qui se produit dans le cortex prémoteur ventral (PMv) des deux hémisphères a été étudiée (Chapitre 2). Le PMv est une zone connue pour être impliquée dans le contrôle moteur de la main et la récupération des lésions M1. Dans une seconde étude, la réorganisation rapide du M1 contralésionnel (cM1) a été étudiée et comparée à celles se produisant dans les PMv bilatérales (Chapitre 3). Le cM1 joue un rôle complexe dans la récupération des mouvements de précision de la main suite à une blessure à son homologue. Nous révélons une réorganisation neuronale importante et beaucoup plus complexe que prévu dans les deux hémisphères lors de l’apparition initiale des déficiences motrices. Nos données démontrent que les changements neuronaux survenant quelques minutes après une lésion cérébrale sont hétérogènes à la fois dans et entre les zones du réseau moteur cortical. Ils se produisent dans les deux hémisphères lors des mouvements des bras parétiques et non parétiques, et ils varient au cours des différentes phases du mouvement. Ces découvertes constituent une première étape nécessaire pour démêler les corrélats neuronaux complexes de la réorganisation au travers du réseau moteur des deux hémisphères à la suite d’une lésion cérébrale. / After brain injuries such as stroke, the primary motor cortex (M1) is often damaged leading to motor deficits that include a loss of fine motor skills of the contralateral limbs. Recovery from M1 lesions is accompanied by hemodynamic reorganization in motor areas distal to the site of injury in both hemispheres that are most pronounced early after injury. However, we have limited understanding of the rapid neuronal reorganization that occurs in this complex and distributed cortical motor network. As these neural changes reflect the landscape on which subacute plasticity involved in motor recovery will take place, an exploration of the rapid reorganization in neural activity that occurs in motor regions of both hemispheres is long overdue. In the current thesis, we set out to explore the impact of a localized, unilateral and reversible cortical injury to the M1 hand area on neuronal activity in motor-related areas of both the ipsi and contralesional hemispheres as non-human primates performed a reach and grasp task. Our inactivation model allowed us to continuously record isolated neurons before and after the onset of motor deficits. In a first study, the rapid reorganization taking place in the ventral premotor cortex (PMv) of both hemispheres was investigated (Chapter 2). The PMv is an area well-known to be critically involved in hand motor control and recovery from M1 lesions. In a second study, the rapid reorganization taking place in the contralesional M1 (cM1) was studied and compared to those occurring in bilateral PMv (Chapter 3). The cM1 has a complex role in recovery of dexterous hand movements following injury to its homologue. We reveal extensive, and much more complex than expected, neuronal reorganization in both hemispheres at the very onset of motor impairments. Our data demonstrate that neuronal changes occurring within minutes after brain injury are heterogenous both within and across areas of the cortical motor network. They occur in the two hemispheres during movements of both the paretic and non-paretic arms, and they vary during different phases of movement. These findings constitute a first step in a much needed and timely effort to unravel the complex neuronal correlates of the reorganization that takes place across the distributed motor network after brain injury.
8

Interactions interhémisphériques dans le contrôle du mouvement unilatéral

Beaulé-Bulman, Vincent 02 1900 (has links)
L’exécution d’un mouvement purement unilatéral nécessite le recrutement d’un vaste réseau de régions corticales et sous-corticales, qu’il est possible de regrouper sous le terme de réseau de transformation non-miroir. Ce réseau doit contrer la tendance naturelle du cerveau à exécuter des mouvements de manière bilatérale et synchronisée, en miroir. Malgré l’efficacité de ce réseau, une activité miroir subtile est observée au niveau de la main qui doit demeurer inactive lors de mouvements unilatéraux chez l'humain en santé. Ce débordement moteur doit être inhibé grâce aux interactions interhémisphériques transitant par le corps calleux (CC), la plus grande commissure du cerveau servant de pont entre les hémisphères. Ainsi, la commande motrice peut être acheminée efficacement du cortex moteur primaire (M1) controlatéral à la main devant exécuter une l’action par l’entremise de la voie corticospianle (VCS). En plus du CC, le cortex prémoteur (CPM) joue un rôle important dans ce réseau puisque son interférence via la stimulation magnétique transcrânienne (SMT) entraîne une augmentation de l’activité miroir dans la main devant normalement demeurer inactive lors d’un mouvement unilatéral. Ainsi, toute modification dans ce réseau ou dans les processus interhémisphériques peut provoquer l’augmentation des mouvements miroirs (MM). À ce jour, aucune étude n’a tenté de moduler ces interactions pour réduire la présence de MM. Ainsi, les études cliniques et méthodologiques qui composent la présente thèse comportent deux objectifs principaux : (1) déterminer si la stimulation électrique transcrânienne à courant direct (SÉTcd) permet l'étude du réseau de transformation non-miroir, et si cette technique est en mesure de diminuer l’intensité des MM chez des individus en santé; (2) caractériser l'anatomie et le fonctionnement du cerveau dans deux populations d’individus porteurs de mutations génétiques affectant le développement de structures impliquées dans la latéralisation du mouvement, le CC et la VCS. L’article 1 décrit les assisses théoriques de la présente thèse grâce à une revue de la littérature portant sur les interactions interhémisphériques dans le mouvement unilatéral. L’article 2 suggère que la SÉTcd est un outil efficace dans l'étude du réseau de transformation non-miroir puisque le protocole de stimulation bilatérale a permis d’augmenter la présence et l’intensité des MM physiologiques (MMp) chez des individus en santé. Cependant, il n’a pas été possible de moduler à la baisse les MMp malgré différents protocoles de stimulation. Dans l’article 3, l'étude d’individus nés sans CC a mis en lumière une augmentation de l’épaisseur corticale au niveau des aires somatosensorielles (S1) et visuelles (V1) primaires, de même qu’au niveau de la représentation de la main dans M1. Ces différences demeurent toutefois légères considérant l’importance du CC. L’article 4 a démontré que les individus porteurs d’une mutation sur le gène DCC présentent un phénotype similaire à celui de porteurs d'une mutation sur le gène RAD51. Ces mutations affectent la migration de la VCS au niveau des pyramides. La VCS projette ainsi aux deux mains, causant des mouvements miroirs congénitaux (MMC). Cette pathologie est également accompagnée d’anomalies neurophysiologiques, telle qu’une inhibition interhémisphérique (IIH) réduite. En somme, les études composant cette thèse ont permis d’approfondir notre connaissance de certaines structures responsables de la latéralisation adéquate du mouvement, tout en décrivant de nouvelles méthodes pour en étudier le fonctionnement. / The execution of purely unilateral hand movements requires the recruitment of vast cortical and subcortical brain areas known as the non-mirroring network. This network counteracts the natural tendency of the brain, which tends to execute movements in a bilateral and synchronized manner. Despite the efficacy of the non-mirroring network in restricting motor output to contralateral limbs, subtle mirroring can be observed in the inactive hand of healthy individuals when performing a unilateral task. This motor overflow needs to be inhibited through interhemispheric projections coursing through the corpus callosum (CC), the biggest white matter tract of the brain. This mechanism makes it possible for motor commands originating from the primary motor cortex (M1) to reach the contralateral hand performing an action via the corticospinal tract (CST). It has been suggested that the premotor cortex (PMC) is an important component of the non-mirroring network since its interference with transcranial magnetic stimulation (TMS) enhances mirror activity in the inactive, mirror hand when a unilateral hand movement is performed. Indeed, modulation of parts of the non-mirroring network and interhemispheric projections can result in enhanced mirror movements (MM). It is not known whether specific interventions can decrease MM. The clinical and methodological studies that compose the present thesis have two main objectives: (1) Determine whether transcranial direct-current stimulation (tDCS) can be used to assess non-mirroring network function and reduce MM intensity in healthy individuals; (2) Characterize brain function and anatomy in two clinical populations presenting specific genetic mutations that affect the development of structures involved in the lateralization of movement (the CC and CST). Article 1 provides a theoretical basis for the present essay through a review of the literature pertaining to interhemispheric interactions in the production of unilateral movements. Article 2 shows that tDCS can be used to study the non-mirroring network since a bilateral stimulation protocol significantly increased the intensity of physiological MM (pMM) in healthy individuals. However, despite different stimulation protocols, it was not possible to reduce pMM. In article 3, anatomical MRIs performed in individuals born without a CC revealed increases in cortical thickness in primary somatosensory (S1) and visual (V1) cortex, as well as in the hand representation of M1. Taken together, however, the data suggest that anatomical differences between acallosal patients and healthy participants are relatively subtle considering the size and function of the CC. Article 4 showed that individuals presenting a mutation on the DCC gene display a phenotype similar to that of individuals presenting a mutation on the RAD51 gene. DCC mutations affect the crossing of the CST at the pyramidal level, resulting in a CST that projects to both hands simultaneously, causing congenital mirror movements (CMM). This pathological condition is accompanied by neurophysiological anomalies that include reduced interhemispheric inhibition (IHI). In summary, the studies comprised in the present thesis significantly increase our knowledge of the specific brain structures that enable the proper lateralization of movements. It also describes novel methods that can be used to investigate the non-mirroring network.
9

Modulation corticale de la locomotion / Cortical modulation of locomotion

Tard, Céline 10 December 2015 (has links)
Les patients atteints de maladie de Parkinson présentent des troubles de la marche, parfois paroxystiques, pouvant être aggravés ou améliorés par les stimuli environnementaux. L'attention portée, soit aux stimuli extérieurs, soit à la marche, pourrait ainsi moduler la locomotion.L’objectif principal était donc de mieux caractériser la manière dont les stimuli environnementaux modulent par le biais de réseaux attentionnels la locomotion. Ceci a été étudié chez les sujets sains puis chez les patients parkinsoniens, avec ou sans enrayage cinétique.Nous avons d'abord défini précisément les déficits attentionnels des patients, avec ou sans troubles de la marche. Ils présentaient respectivement des difficultés en flexibilité mentale et plus particulièrement en attention divisée.Nous avons ensuite exploré l'interaction attention-locomotion grâce à l'étude de la préparation motrice. Ainsi, nous avons pu démontrer que les ajustements posturaux anticipés étaient un marqueur sensible de l’attention. Chez les patients, ils pouvaient témoigner d’une altération de l'interaction attention-programmation motrice.L'étude des régions cérébrales activées lors de la locomotion visuo-guidée chez ces patients a permis de confirmer l'implication de structures corticales attentionnelles. Un déséquilibre d’activation au sein du réseau pariéto-prémoteur (nécessaire à la modulation de l'action motrice en fonction des stimuli externes) était présent.Enfin, nous avons essayé de modifier l'excitabilité du cortex prémoteur via des techniques de stimulation magnétique transcrânienne répétitive afin de moduler la locomotion visuo-guidée. / Patients with Parkinson 's disease present gait impairments, sometimes sudden and unexpected, either improved or deteriorated with environmental stimuli. Attention focalization, either on external stimuli or on gait, could then modulate locomotion.The main objective was to better characterize how environmental stimuli would modulate locomotion, via attentional networks, in healthy subjects and in parkinsonian patients, with or without freezing of gait.At first, we precisely defined the attentional deficits in patients, with or without gait impairment. They showed altered performance respectively in mental flexibility and in divided attention.Then, we explored the attention-locomotion interaction by studying motor preparation. So, we highlighted that anticipatory postural adjustments were a sensitive marker of attention. In patients, they evidenced an alteration of the attention-motor program interaction.Studying the brain activation during the visuo-driven locomotion in these patients confirmed the involvement of cortical attentional regions. We observed an imbalance inside the parieto-premotor network (useful to modulate motor action according external stimuli)Finally, we tried to change the excitability of the premotor cortex with transcranial magnetic stimulation to modulate visuo-driven locomotion.

Page generated in 0.2013 seconds