• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 17
  • 15
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Screening de uma bibliotecade expressãode cDNA de cerebelo de rato usando-se como sonda o anticorpo anti-KM+ e expressão de drebinas em displasia cortical focal IIB (DCF IIB) associada com epilepsia de difícil controle medicamentoso / Screning of a lambda zapii rat cerebellum library using an affinity-purified anti-lectin KM+ antibody expression of drebins in focal cortical dysplasia type type IIB (FCD IIB) associated with drug-resistant epilepsy

Roberta de Assis Maia 01 June 2007 (has links)
p83 é uma proteína com massa molecular aparente de 83 kDa, supostamente ainda não descrita, específica de sistema nervoso, e desenvolvimento regulada. p83 interage fortemente com laminina, Tau, tubulina e heat shock protein 90. p83 foi inicialmente detectada por imunohistoquímica e western blot usando-se um anticorpo anti-lectina KM+ purificado por afinidade. Sua purificação a partir de cérebro de rato está em progresso. Identificar o envolvimento de p83 em processos do Sistema Nervoso Central humano é um passo necessário em direção à compreensão de sua função biológica. Uma biblioteca de expressão de cDNA de cerebelo de rato (Lambda ZAP II, Stratagene) foi submetida ao screening, usando-se um anticorpo específico para isolar o cDNA de p83. O anticorpo anti-KM+ foi pré-adsorvido contra proteínas de E. coli XL1 Blue MRF, antes de ser usado no screening. As membranas foram reveladas por imunodetecção cromogênica (fosfatase alcalina e NBT/BCIP). A análise de todos os clones Lambda ZAP II foi feita por excisão in vivo do fagomídeo pBluescript, subclonagem em E. coli XL1 Blue MRF, purificação do DNA plasmidial e digestão com Eco RI. A seqüência correspondente ao clone isolado foi analisada usando-se ferramentas e bancos de dados do NCBI. A seqüência nucleotídica mostrou identidade com as isoformas A e E de drebrina. As isoformas A e E de drebrina foram detectadas em adulto e embrião, respectivamente. Drebrina A é uma proteína sistema nervoso-específica, desenvolvimento regulada e associa-se com F-actina. Embora drebrina e p83 compartilhem propriedades em comum, nossos dados de western blot indicaram que parecem não se tratar da mesma proteína. Nós investigamos a expressão de drebrina em Displasia Cortical Focal tipo IIB, comparando com córtex normal. As secções de tecido foram coradas com hematoxilina-eosina e prata (Bielchowsky). Secções foram processadas por imunohistoquímica usando-se os anticorpos anti-drebrina M2F6 e o DAS2, e recuperação antigênica. A detecção foi feita usando-se um anticorpo biotinilado, e DAB como cromógeno. Os tecidos displásicos (13 casos) foram obtidos cirurgicamente de tecidos exibindo epilepsia droga-resistente. Os controles foram obtidos de necrópsia de 15 pacientes sem história prévia de doenças neurológicas ou alterações patológicas. Nossos resultados sugerem uma associação entre drebrina e DCF IIB, um distúrbio do desenvolvimento cortical. / p83 is 83 kDa protein supposedly not yet described, nervous system specific, and developmentally regulated. p83 strongly interacts with laminin, Tau, tubulin and heat shock protein 90. It was initially detected by immunohistochemistry and western blot using an affinity-purified anti-lectin KM+ antibody. Its purification from rat brain is in progress. Identifying the involvement of p83 in human Central Nervous System processes is a required step towards understanding its biological roles. A premade cDNA rat cerebellum expression library (Lambda ZAP II, Stratagene) has been screened, using a specific antibody to isolate p83 cDNA. Anti-KM+ antibody was pre-adsorbed against E. coli XL1 Blue MRF proteins, before using in screening. Membranes were revealed by cromogenic immunodetection (alcaline fostase and NBT/BCIP). The analysis of all positive Lambda ZAP II clones was carried out by in vivo excision of pBluescript, subcloning in E. coli XL1 Blue MRF, plasmidial DNA purification and Eco RI digestion. The sequence corresponding to the clone isolated was analyzed using the NCBI tools and database. The nucleotide sequence showed identity with drebrin A and E isoforms. Drebrin A and E isoforms were detected in adults and embryos. Drebrin A is a neuron-specific, development-regulated F-actin-binding protein. It participates in growth cone extension and dendritic spine formation. Although have same drebrin and p83 properties in common, they not seem to be the same protein. We have investigated the expression of drebrin in Focal Cortical Dysplasia type IIB (FCD IIB) as compared to normal cortex. Tissue sections were stained with hematoxylin-eosin and silver (Bielchowsky). Sections were processed for immunohistochemistry using anti-drebrin antibodies M2F6 and DAS2, and an antigen retrieval technique. Detection was carried out using a biotinylated antibody, using DAB as chromogen. Dysplastic tissues (13 cases) were obtained at surgery for drug-resistant epilepsy. Controls were obtained at autopsy from 15 patients without history of neurological disorder and gross pathological changes. A specific drebrin labeling in dysplastic tissue was more intense than in controls. Indeed, most control cases exhibited at most a slightly higher staining than the background. Balloon, clear and undetermined cells, and giant, dysmorphic neurons, showed a conspicuous labeling by anti-drebrin. These cells showed a thin rim labeling of the nuclear membrane, and a finely punctate nuclear labeling. In contrast, a coarse nuclear, but a faint cytoplasm labeling was observed in autopsy cases. Our data suggest an association between Drebrin expression and the FCD IIB, a disturbance of cortical development.
22

Role of the cotransporter KCC2 in cortical excitatory synapse development and febrile seizure susceptibility

Awad, Patricia Nora 08 1900 (has links)
Le co-transporteur KCC2 spécifique au potassium et chlore a pour rôle principal de réduire la concentration intracellulaire de chlore, entraînant l’hyperpolarisation des courants GABAergic l’autorisant ainsi à devenir inhibiteur dans le cerveau mature. De plus, il est aussi impliqué dans le développement des synapses excitatrices, nommées aussi les épines dendritiques. Le but de notre projet est d’étudier l’effet des modifications concernant l'expression et la fonction de KCC2 dans le cortex du cerveau en développement dans un contexte de convulsions précoces. Les convulsions fébriles affectent environ 5% des enfants, et ce dès la première année de vie. Les enfants atteints de convulsions fébriles prolongées et atypiques sont plus susceptibles à développer l’épilepsie. De plus, la présence d’une malformation cérébrale prédispose au développement de convulsions fébriles atypiques, et d’épilepsie du lobe temporal. Ceci suggère que ces pathologies néonatales peuvent altérer le développement des circuits neuronaux irréversiblement. Cependant, les mécanismes qui sous-tendent ces effets ne sont pas encore compris. Nous avons pour but de comprendre l'impact des altérations de KCC2 sur la survenue des convulsions et dans la formation des épines dendritiques. Nous avons étudié KCC2 dans un modèle animal de convulsions précédemment validé, qui combine une lésion corticale à P1 (premier jour de vie postnatale), suivie d'une convulsion induite par hyperthermie à P10 (nommés rats LHS). À la suite de ces insultes, 86% des rats mâles LHS développent l’épilepsie à l’âge adulte, au même titre que des troubles d’apprentissage. À P20, ces animaux presentent une augmentation de l'expression de KCC2 associée à une hyperpolarisation du potentiel de réversion de GABA. De plus, nous avons observé des réductions dans la taille des épines dendritiques et l'amplitude des courants post-synaptiques excitateurs miniatures, ainsi qu’un déficit de mémoire spatial, et ce avant le développement des convulsions spontanées. Dans le but de rétablir les déficits observés chez les rats LHS, nous avons alors réalisé un knock-down de KCC2 par shARN spécifique par électroporation in utero. Nos résultats ont montré une diminution de la susceptibilité aux convulsions due à la lésion corticale, ainsi qu'une restauration de la taille des épines. Ainsi, l’augmentation de KCC2 à la suite d'une convulsion précoce, augmente la susceptibilité aux convulsions modifiant la morphologie des épines dendritiques, probable facteur contribuant à l’atrophie de l’hippocampe et l’occurrence des déficits cognitifs. Le deuxième objectif a été d'inspecter l’effet de la surexpression précoce de KCC2 dans le développement des épines dendritiques de l’hippocampe. Nous avons ainsi surexprimé KCC2 aussi bien in vitro dans des cultures organotypiques d’hippocampe, qu' in vivo par électroporation in utero. À l'inverse des résultats publiés dans le cortex, nous avons observé une diminution de la densité d’épines dendritiques et une augmentation de la taille des épines. Afin de confirmer la spécificité du rôle de KCC2 face à la région néocorticale étudiée, nous avons surexprimé KCC2 dans le cortex par électroporation in utero. Cette manipulation a eu pour conséquences d’augmenter la densité et la longueur des épines synaptiques de l’arbre dendritique des cellules glutamatergiques. En conséquent, ces résultats ont démontré pour la première fois, que les modifications de l’expression de KCC2 sont spécifiques à la région affectée. Ceci souligne les obstacles auxquels nous faisons face dans le développement de thérapie adéquat pour l’épilepsie ayant pour but de moduler l’expression de KCC2 de façon spécifique. / The potassium-chloride cotransporter KCC2 decreases intracellular Cl- levels and renders GABA responses inhibitory. In addition, it has also been shown to modulate excitatory synapse development. In this project, we investigated how alterations of KCC2 expression levels affect these two key processes in cortical structures of a normal and/or epileptic developing brain. First, we demonstrate that KCC2 expression is altered by early-life febrile status epilepticus. Febrile seizures affect about 5% of children during the first year of life. Atypical febrile seizures, particularly febrile status epilepticus, correlate with a higher risk of developing cognitive deficits and temporal lobe epilepsy as adults, suggesting that they may permanently change the developmental trajectory of neuronal circuits. In fact, the presence of a cerebral malformation predisposes to the development of atypical febrile seizures and temporal lobe epilepsy. The mechanisms underlying these effects are not clear. Here, we investigated the functional impact of this alteration on subsequent synapse formation and seizure susceptibility. We analyzed KCC2 expression and spine density in the hippocampus of a well-established rodent model of atypical febrile seizures, combining a cortical freeze lesion at post-natal day 1 (P1) and hyperthermia-induced seizure at P10 (LHS rats). 86% of these LHS males develop epilepsy and learning and memory deficits in adulthood. At P20, we found a precocious increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA (EGABA) by gramicidin-perforated patch. In parallel, we observed a reduction in dendritic spine size by DiI labelling and a reduction of miniature excitatory postsynaptic current (mEPSC) amplitude in CA1 pyramidal neurons, as well as impaired spatial memory. To investigate whether the premature expression of KCC2 played a role in these alterations in the LHS model, and on seizure susceptibility, we reduced KCC2 expression in CA1 pyramidal neurons by in utero electroporation of shRNA using a triple-probe electrode. This approach lead to reduced febrile seizure susceptibility, and rescued spine size shrinkage in LHS rats. Our results show that an increase of KCC2 levels induced by early-life insults affect seizure susceptibility and spine development and may be a contributing factor to the occurrence of hippocampal atrophy and associated cognitive deficits in LHS rats. Second, we investigated whether KCC2 premature overexpression plays a role in spine alterations in the hippocampus. We overexpressed KCC2 in hippocampal organotypic cultures by biolistic transfection and in vivo by in utero electroporation. In contrast to what was previously published, we observed that both manipulations lead to a decrease in spine density in the hippocampus, as well as an increase in spine head size in vivo. In fact, it has been previously shown that overexpressing KCC2 leads to an increase of spine density in the cortex in vivo. To prove that this discrepancy is due to brain regional differences, we overexpressed KCC2 in the cortex by in utero electroporation, and similarly found an increase in spine density and length. Altogether, our results demonstrate for the first time, that alterations of KCC2 expression are brain circuit-specific. These findings highlights the obstacles we will face to find adequate pharmacological treatment to specifically modulate KCC2 in a region-specific and time-sensitive manner in epilepsy.
23

Crosstalk between the immune and nervous systems : how early-life activation of toll-like receptors can alter hippocampal neuronal excitability and predisposition to seizures in rodents

Shaker, Tarek 12 1900 (has links)
Les récepteurs de type Toll (TLR) sont des récepteurs cellulaires jouant un rôle pivot dans le déclenchement de la réponse immunitaire après une infection ou une blessure, c'est-à-dire une inflammation. L'activation de la signalisation TLR a été associée à l’épilepsie. Dans ce projet, j'utilisai trois modèles distincts pour étudier comment le déclenchement des TLR contribue à l'épileptogenèse. Il existe une corrélation entre les malformations corticales développementales telle la dysplasie corticale focale (FCD) et convulsions fébriles dans les enfants de bas âge. Récemment, une réponse neuro-inflammatoire fut identifiée dans les lésions FCD. Nous postulâmes que l'inflammation induite par le FCD peut augmenter la sensibilité aux crises (chapitre 2). Nous modélisâmes FCD en induisant une congélation-lésion corticale chez le rat néonatal. La lésion corticale déclencha des effecteurs en aval de TLR4, spécifiquement le précurseur de la cytokine Caspase-1, dans l'hippocampe ipsilatéral à la lésion. Les rats lésés développèrent des crises fébriles expérimentales nettement plus rapidement que les rats témoins. Le blocage de l'activité de la Caspase-1 prolongea significativement la latence des crises chez les rats lésés. Nos résultats impliquent l'inflammation médiée par la Caspase-1 en tant que déclencheur des crises fébriles chez les enfants avec FCD préexistante. Des études antérieures déterminèrent que l'activation systémique de la cascade TLR4 abaisse le seuil de crise. Nous étudiâmes si la pénétration des cellules immunitaires périphériques dans le cerveau pendant la stimulation TLR4 favorise l'activité ictal en stimulant la voie TLR4 dans les leucocytes prélevés sur la rate de rat (splénocytes). Ensuite, nous co-cultivâmes des splénocytes avec des coupes organotypiques dérivées du cerveau in vitro (chapitre 3). L'ajout de splénocytes stimulés par TLR4 donna lieu à une neuro-inflammation et à une excitation neuronale accrue. L’ajout de splénocytes non-stimulés n’eut aucun effet pro-inflammatoire ou pro-excitateur dans les coupes organotypiques. De plus, l'inhibition de la Caspase-1 dans des coupes organotypiques co-cultivées avec des splénocytes stimulés diminua la neuro-inflammation et l'hyperexcitabilité neuronale. Nos résultats suggèrent que l'infiltration de leucocytes activés par TLR4 dans le cerveau augmente la prédisposition aux crises via les mécanismes médiés par la Caspase-1. Précédemment, des rapports montrèrent que l'activation de la signalisation TLR3 facilite l'évolution des crises. L'introduction d'un agoniste synthétique TLR3 chez la souris in vivo et des coupes organotypiques hippocampiques in vitro produisirent des mécanismes anti-inflammatoires dépendants de la dose et du temps (chapitre 4). La stimulation TLR3 supprimait les crises d'hippocampe in vivo et réduisait l'excitabilité synaptique dans le réseau hippocampique à la fois in vivo et in vitro. Nous avons déterminé que les effets anticonvulsivants médiés par TLR3 étaient principalement provoqués par les cascades en aval IRF3 / IFN-β. Ainsi, nos données suggèrent que l'activation de TLR3 peut protéger le cerveau contre les crises par la production d'IFN-β. Nos résultats donnent un aperçu des nouveaux mécanismes cellulaires sous-jacents à la modulation inflammatoire de l'excitabilité neurale. Notre découverte des rôles de la Caspase-1 et de l'IFN-β dans l'influence du seuil de crise améliorera notre compréhension des fondements moléculaires de la génération de crises ce qui pourraient améliorer le traitement de l'épilepsie. / Toll-like receptors (TLRs) are cellular receptors that play a pivotal role in initiating immune response following infection or injury, i.e. inflammation. Nevertheless, activation of TLR signaling has been associated with seizure manifestation. In this research, I employed three distinct models to study how triggering TLRs contributes to ictogenesis. There is a correlation between developmental cortical malformations, e.g. focal cortical dysplasia (FCD), and fever-provoked, i.e. febrile, seizures in young children. Recently, neuroinflammation was reported in FCD lesions. Therefore, we posited that FCD-induced inflammation may increase seizure susceptibility (Chapter 2). To recapitulate FCD pathology, we induced a cortical freeze-lesion in neonatal rats. Lesioning the cortex triggered TLR4 downstream effectors, specifically the cytokine precursor Caspase-1, in the hippocampus ipsilateral to the lesion. Further, lesioned rats developed experimental febrile seizures markedly faster than sham control rats. Strikingly, blocking Caspase-1 activity prior to seizure induction significantly prolonged seizure latency in lesioned rats. Our results implicate Caspase-1-mediated inflammation as a main driver of febrile seizures in children with pre-existing brain malformations. In addition, previous reports determined that systemic activation of TLR4 cascade lowers seizure threshold. Hence, we developed an in vitro model to investigate whether penetration of peripheral immune cells into the brain during TLR4 stimulation promotes ictogenic activity (Chapter 3). First, we stimulated TLR4 pathway in leukocytes harvested from rat spleen, i.e. splenocytes. Thereafter, we co-cultured splenocytes with brain-derived organotypic slices in vitro. Adding TLR4-stimulated splenocytes gave rise to neuroinflammation and enhanced neuronal excitation, whereas adding unstimulated splenocytes failed to evoke pro-inflammatory or proexcitatory effects in organotypic slices. Moreover, Caspase-1 inhibition in organotypic slices cocultured with stimulated splenocytes diminished neuroinflammation and neuronal hyperexcitability. Our findings suggest that infiltration of TLR4-activated leukocytes into the brain elevate seizure predisposition via Caspase-1-mediated mechanisms. Beside TLR4 pathway, it was previously shown that activation of TLR3 signaling facilitates seizure evolution. In chapter 4, introducing a synthetic TLR3 agonist to mice in vivo and to hippocampal organotypic slices in vitro yielded anti-inflammatory mechanisms in a dose- and time-dependent manner. Also, we found that TLR3 stimulation suppressed hippocampal seizures in vivo and reduced synaptic excitability in the hippocampal network both in vivo and in vitro. Finally, we determined that TLR3-mediated anticonvulsive effects were chiefly driven by IRF3/IFN-β downstream cascades. Thus, our data suggests that TLR3 activation may protect the brain from seizures through production of IFN-β. Altogether, our findings provide insight into novel cellular mechanisms underlying inflammatory modulation of neural excitability. Furthermore, our discovery of the roles of Caspase-1 and IFN-β in influencing seizure threshold will improve our understanding of the molecular underpinnings of seizure generation, which may ultimately have therapeutic benefits for epilepsy treatment.

Page generated in 0.0674 seconds