• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 9
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 46
  • 23
  • 22
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cosmic microwave background anisotropies in an inhomogeneous universe.

Nazer, Mohammad Ahsan January 2015 (has links)
The timescape cosmology represents a potentially viable alternative to the standard homogeneous and isotropic Friedmann--Lemaître--Robertson--Walker (FLRW) cosmology, without the need for dark energy. This thesis first extends the previous work on the timescape cosmology to include a radiation component in the evolution equations for the timescape cosmology and tests of the timescape model are then performed against the Cosmic Microwave Background (CMB) temperature anisotropies from the Planck satellite. Although average cosmic evolution in the timescape scenario only differs substantially from that of FLRW cosmologies at relatively late epochs when the contribution from the energy density of radiation is negligible, a full solution of the Buchert equations to incorporate radiation is necessary to smoothly match parameters to the epoch of photon decoupling and to obtain constraints from CMB data. Here we have extended the matter-dominated solution found in earlier work to include radiation, providing series solutions at early times and an efficient numerical integration strategy for generating the complete solution. To analyse the spectrum of CMB anisotropies in the timescape cosmology we exploit the fact that the timescape cosmology is extremely close to the standard cosmology at early epochs and adapt existing numerical codes to produce CMB anisotropy spectra. To find a FLRW model that matches as closely as possible the timescape expansion history, we have studied and compared a number of matching methods. We perform Markov Chain Monte Carlo analyses on the timescape model parameter space, and fit CMB multipoles 50 ≤ l ≤ 2500 to the Planck satellite data. Parameter fits include a dressed Hubble constant, H₀ = 61.0 kms ⁻¹Mpc⁻¹ (±1.3% stat)(±8% sys), and a present void volume fraction fᵥ₀ = 0.627 (±2.3% stat)(±13% sys). In the timescape model this value of fᵥ₀ means that the galaxy/wall observer infers an accelerating universe, where the apparent acceleration is due to gravitational energy gradients and clock rate differences rather than some dark energy. We find best fit likelihoods which are comparable to that of the best fit ΛCDM cosmology in the same multipole range.
12

Constraining Primordial Gravitational Waves with BICEP/Keck Array Telescopes and Developing the BICEP Array Housekeeping System

Palladino, Steven 04 October 2021 (has links)
No description available.
13

Classification of inflationary models and constraints on fundamental physics / Classification des modèles d'inflation et contraints sur la physique fondamentale

Pieroni, Mauro 28 September 2016 (has links)
Ce travail est concentré sur l'étude de la cosmologie primordiale et en particulier sur l'étude de l'inflation. Après une introduction sur la théorie standard du Big Bang, nous discutons de la physique du CMB et nous expliquons comment ses observations peuvent être utilisées pour définir des contraintes sur les modèles cosmologiques. Nous introduisons l'inflation et nous expliquons sa réalisation la plus simple. Nous présentons les observables et les contraintes expérimentales qui peuvent être utilisées pour mettre des contraintes sur les modèles d'inflation. La possibilité d'observer des ondes gravitationnelles primordiales (GW) produites au cours de l'inflation est examinée. Nous présentons les raisons pour définir une classification des modèles d'inflation et pour introduire le formalisme de la fonction 13 pour décrire l'inflation. En particulier nous expliquons pourquoi, dans ce cadre, nous pouvons naturellement définir un ensemble de classes d'universalité pour les modèles d'inflation. Les motivations théoriques pour soutenir la formulation de l'inflation en termes de ce formalisme sont présentées. Certains modèles généralisés d'inflation sont introduits et l'extension du formalisme de la fonction (3-formalisme à ces modèles est discutée. Enfin, nous nous concentrons sur l'étude des modèles où l’inflation (qui es assumé être pseudo-scalaire) est couplé non-minimalement à des champs de jauge abéliens qui peuvent être présents lors de l'inflation. L'analyse du problème est effectuée en utilisant une caractérisation de modèles d'inflation sur la base de leur comportement asymptotique. Un large éventail d'aspects théoriques et des conséquences d'observation est discuté. / This work is focused on the study of early time cosmology and in particular on the study of inflation. After an introduction on the standard Big Bang theory, we discuss the physics of CMB and we explain how its observations can be used to set constraints on cosmological models. We introduce inflation and we carry out its simplest realization by presenting the observables and the experimental constraints that can be set on inflationary models. The possibility of observing primordial gravitational wave (GW) produced during inflation is discussed. We present the reasons to deftne a classification of inflationary models and introduce the [3-function formalism for inflation by explaining why in this framework we can naturally define a set of universality classes for inflationary models. Theoretical motivations to support the formulation of inflation in terms of this formalism are presented. Some generalized models of inflation are introduced and the extension of the (3-function formalism for inflation to these models is discussed. Finally we focus on the study of models where the (pseudo-scalar) inflaton is non-minimally coupled to some Abelian gauge fields that can be present during inflation. The analysis of the problem is carried out by using a characterization of inflationary models in terms of their asymptotic behavior. A wide set of theoretical aspects and of observational consequences is discussed.
14

Cosmological parameter estimation with QUaD CMB polarization and temperature experiment

Memari, Yasin January 2009 (has links)
In this thesis we examine the theoretical origin and statistical features of the Cosmic Microwave Background radiation. We particularly focus on the CMB power spectra and cosmological parameter estimation from QUaD CMB experiment data in order to derive implications for the concordance cosmological model. In chapter 4 we present a detailed parameter estimation analysis of the combined polarization and temperature power spectra from the second and third season observations of the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the polarization spectrum, allowing meaningful parameter analyses from the polarization data alone. In a standard 6-parameter ACDM parameter estimation analysis we find the QUaD TT power spectrum to be in very good agreement with previous results. However, the QUaD polarization data shows some tension with ACDM model. The origin of this 1−2σ tension remains unclear, and may point to new physics, residual systematics or simple random chance. Combining polarization and temperature data we find an acceptable fit, and show that our results are dominated by the polarization signal. We combine QUaD with the five-year data from the WMAP satellite and the SDSS Luminous Red Galaxies 4th data release power spectrum, and extend our analysis to constrain the tensor-to-scalar ratio and the primordial isocurvature perturbations. Our analysis sets a benchmark for future polarization experiments. In chapter 5 we outline and test a new semi-analytical approach for the estimation of the pseudo- temperature and polarization CMB power spectra for experiments with incomplete sky coverage. We propose a method for constructing the mode-mode coupling matrices which connect the temperature and polarization pseudo-Cℓ’s to the unbiased all-sky bandpowers in the flat sky approximation. We apply this method to the apodization masks of the QUaD CMB experiment and we show that the true underlying bandpowers can be reconstructed from the simulated QUaD-like pseudo-Cℓ’s to high precision. We further investigate the possibility of extending the proposed analytical flat sky approach to the exact calculation of the PCL covariance matrices over a large range of multipoles and we find that the numerical calculation is extremely computationally expensive. The flat sky pseudo-Cℓ and covariances methods presented in this chapter are still work in progress and require more testing.
15

Data analysis techniques useful for the detection of B-mode polarisation of the Cosmic Microwave Background

Wallis, Christopher January 2016 (has links)
Asymmetric beams can create significant bias in estimates of the power spectra from cosmic microwave background (CMB) experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. In this thesis, I derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and scan strategies. I test my correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. I also develop a map-making algorithm that removes beam asymmetry bias at the map level. I demonstrate its implementation using simulations. I present two new map-making algorithms that create polarisation maps clean of temperature-to-polarisation leakage systematics due to differential gain and pointing between a detector pair. Where a half wave plate is used, I show that the spin-2 systematic due to differential ellipticity can also be removed using my algorithms. The first algorithm is designed to work with scan strategies that have a good range of crossing angles for each map pixel and the second for scan strategies that have a limited range of crossing angles. I demonstrate both algorithms by using simulations of time ordered data with realistic scan strategies and instrumental noise. I investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. I present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from these systematic errors. I use these analytic predictions to search the parameter space of common satellite scan strategies to identify the features of a scan strategy that have most impact in mitigating systematic effects.
16

Beam Characterization and Systematics of the Bicep2 and Keck Array Cosmic Microwave Background Polarization Experiments

Wong, Chin Lin 21 October 2014 (has links)
Inflation, which posits an exponential expansion in the early universe, is well motivated since it resolves questions that are left unexplained by standard LCDM cosmology, such as the flatness and homogeneity of the universe. The exponential expansion of universe during inflation explains the structure in the universe by freezing out the quantum fluctuations of space. These quantum fluctuations are also expected to generate a background of gravitational waves which would then imprint a B-mode polarization signal on the Cosmic Microwave Background. The Bicep2 and Keck Array experiments search for B-mode polarization from inflationary gravitational waves in the Cosmic Microwave Background. Bicep2 and the Keck Array use small aperture, cold, on-axis refracting optics optimized to target the degree angular scales at which the inflationary B-mode polarization is expected to peak. In this thesis we describe the optical design of Bicep2 and the Keck Array. The small aperture design allows us to fully characterize the far-field performance of the instrument on site at the South Pole using thermal and amplified sources on the ground. We describe the efforts taken to characterize the main beam shapes of each polarization sensitive bolometer, as well as the differential beam paramters of each co-located orthogonally polarized detector pair. We study the residual temperature to polarization leakage induced by the beam mismatches after the principle modes have been mitigated in the analysis. / Physics
17

High-energy aspects of inflationary cosmology

Lee, Hayden January 2017 (has links)
Since the discovery of the cosmic microwave background (CMB), our understanding of the cosmos has been rapidly evolving. Detailed measurements of the CMB temperature fluctuations have led to a standard cosmological model, which traces the origin of the large-scale structure of the universe to quantum fluctuations during inflation. Although the basic framework of inflationary cosmology is now well-established, the microphysical mechanism responsible for the accelerated expansion remains a mystery. In this thesis, we describe how the physics underlying inflation can be probed using two cosmological observables: higher-order correlations of primordial density perturbations (non-Gaussianity) and primordial gravitational waves (tensor modes). In the first part of the thesis, we explore novel signatures of high-energy physics in higher- order correlation functions of inflationary perturbations. First, we use causality and unitarity to make connections between cosmological observations and the underlying short-distance dynamics of single-field inflation. We obtain a constraint on the size and the sign of the four-point function in terms of the amplitude of the three-point function. We then study the imprints of extra massive particles of arbitrary spin on the three-point function. We classify the couplings of these particles to inflationary scalar and tensor perturbations and derive explicit shape functions for their three- point functions that can serve as templates for future observational searches. Establishing the particle content during inflation would provide important hints for the microscopic theory of inflation. In the second part, we study ways of testing the nature of inflation using inflationary tensor modes. We consider effects of gravitational corrections to Einstein gravity in models of high-scale inflation. We show that these scenarios can lead to a violation of the tensor consistency condition (i.e. the relation between the amplitude and the scale-dependence of the tensor two-point function) that is satisfied by canonical single-field inflationary models. Finally, we consider the prospects for measuring the inflationary superhorizon signature in future observations. We define an estimator that captures superhorizon correlations and present forecasts for the detectability of the signal with future CMB polarization experiments.
18

Cosmology with CMB and large scale structure

Ma, Yin-Zhe January 2011 (has links)
Cosmology has become a precision science due to a wealth of new precise data from various astronomical observations. It is therefore important, from a methodological point of view, to develop new statistical and numerical tools to study the Cosmic Microwave Background (CMB) radiation and Large Scale Structure (LSS), in order to test different models of the Universe. This is the main aim of this thesis. The standard inflationary -dominated Cold Dark Matter ( CDM) model is based on the premise that the Universe is statistically isotropic and homogeneous. This premise needs to be rigorously tested observationally. We study the angular correlation function C(θ) of the CMB sky using the WMAP 5-year data, and find that the low-multipoles can be reconstructed from the data outside the sky cut. We apply a Bayesian analysis and find that S1/2 statistic (S1/2 = R [C(θ)]2d cos θ, used by various investigators as a measure of correlations at large angular scales) cannot exclude the predictions of the CDM model. We clarify some issues concerning estimation of correlations on large angular scales and their interpretation. To test for deviation from statistical isotropy, we develop a quadratic maximum likelihood estimator which we apply to simulated Planck maps. We show that the temperature maps from Planck mission should be able to constrain the amplitude of any spherical multipole of a scaleinvariant quadrupole asymmetry at the 1% level (2σ). In addition, polarization maps are also precise enough to provide complimentary constraints. We also develop a method to search for the direction of asymmetry, if any, in Planck maps. B-mode polarisation of the CMB provides another important test of models of the early Universe. Different classes of models, such as single-field inflation, loop quantum cosmology and cosmic strings give speculative but testable predictions. We find that the current ground-based experiments such as BICEP, already provided fairly tight constraints on these models. We investigate how these constraints might be improved with future observations (e.g. Planck, Spider). In addition to the CMB related research, this thesis investigates how peculiar velocity fields can be used to constrain theoretical models of LSS. It has been argued that there are large bulk flows on scales of & 50 Mpc/h. If true, these results are in tension with the predictions of the CDM model. We investigate a possible explanation for this result: the unsubtracted intrinsic dipole on the CMB sky may source this apparent flow, leading to the illusion of the tilted Universe. Under the assumption of a superhorizon isocurvature fluctuation, the constraints on the tilted velocity require that inflation lasts at least 6 e-folds longer (at the 95% confidence interval) than that required to solve the horizon problem. Finally, we investigate Cosmic Mach Number (CMN), which quantifies the ratio between the mean velocity and the velocity dispersion of galaxies. We find that CMN is highly sensitive to the growth of structure on scales (10, 150) Mpc/h, and can therefore be used to test modified gravity models and neutrino masses. With future CMN data, it should be possible to constrain the growth factor of linear perturbation, as well as the sum of the neutrino mass to high accuracy.
19

Constraining the epoch of recombination with recent observations of the cosmic microwave background

Linn, Angela M. 07 November 2003 (has links)
No description available.
20

The C-Band All Sky Survey

Copley, Charles Judd January 2014 (has links)
The C-Band All-Sky Survey (C-BASS) is a 1 GHz bandwidth survey of the radio sky in both intensity and polarization at a frequency of 5 GHz and with a resolution of 0.8. Northern and Southern sky coverage is provided by antennas located at the Owen’s Valley Radio Observatory (OVRO) in California, and the MeerKAT support base in South Africa, respectively. The primary science goal of C-BASS is to provide a highly sensitive C-Band all sky intensity and polarization map to augment the WMAP/Planck surveys. Removal of foregound contamination will place a limit on the success of Cosmic Microwave Background (CMB) experiments that attempt to detect the B-Mode polarization of the CMB. We will provide a HEALPix map (N<sub>side</sub>=128) with an r.m.s. noise of 0.13 mK/pixel in Stokes Q and Stokes U, and a confusion limited r.m.s. noise of 0.8 mK/pixel in Stokes I. Removal of foregrounds at the higher frequency CMB surveys will be significantly improved by this lower frequency constraint. This thesis describes the development of the C-BASS gain-stabilized receiver capable of making sensitive measurements of both galactic total intensity and polarization. The receiver features a novel digital backend to provide spectral detail across the frequency band of interest. The analog signal conditioning uses a double sideband mixer to mix the RF frequencies to a DC–1000 MHz baseband for digitization. By changing the mixer frequency and/ or duplicating the signal conditioning and digital hardware, the RF frequency coverage can be modified for other projects. I also describe the process of converting a 7.6 m telecommunications dish to a high performance radio astronomy platform. The discussion includes dish surface measurements, optical design, and the development of an inexpensive telescope servo controller. The antenna conversion process and receiver design can be used to significantly reduce capital costs of future experiments, which is especially useful for short timescale experiments. The African VLBI (Nordling, 2012) is currently following a similar route to repurpose antennas across the African continent.

Page generated in 0.0638 seconds