• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des couplages entre des transferts conductifs, convectifs et radiatifs en milieux poreux / Coupled upscaling approaches for conduction, convection and radiation in porous media

Leroy, Vincent 30 January 2013 (has links)
Cette thèse aborde la question de la modélisation des transferts thermiques dans les milieux poreux soumis à de hautes températures. Un modèle macroscopique hors équilibre thermique local entre phases est obtenu par changement d’échelle. Cette procédure tient compte à l’échelle locale du couplage entre rayonnement et autres modes de transfert. Le modèle de rayonnement repose sur l’équation de transfert radiatif généralisée (GRTE) et, à la limite courante d’un milieu macroscopiquement optiquement épais, sur la loi de Fourier radiative. L’originalité de cette procédure réside dans l’application de la méthode de prise de moyenne volumique (VAM) aux équations de bilan local, dans lesquelles les transferts radiatifs sont inclus. Cette homogénéisation couplée soulève trois difficultés : - les différents transferts sont de natures différentes. Le système matériel (site de transferts conductifs et convectifs) coexiste avec le champ des photons qui est homogénéisé par une méthode statistique reposant sur la caractérisation des propriétés radiatives au moyen de fonctions de distribution continûment définies sur le volume du milieu poreux. - les échelles de longueur mises en jeu dans la procédure de changement d’échelle doivent être compatibles entre elles. On établit que la séparation des échelles, requise par la prise de moyenne volumique, est compatible avec l’échelle de longueur caractéristique de l’homogénéisation statistique radiative, seulement limitée par la résolution d’une tomographie du milieu. - le phénomène d’émission dépend de la température de la matière. Cette température spécifique au calcul radiatif est obtenue en appliquant un opérateur de prise de moyenne à la température de la matière sur une échelle locale représentative. En pratique, c’est la résolution de cette prise de moyenne qui définit l’échelle des couplages locaux avec la méthode VAM. Le modèle macroscopique résultant est appliqué à la résolution d’un problème unidimensionnel et stationnaire. Dans ce cas simple, le rôle du couplage avec le rayonnement à l’échelle locale est mis en évidence. / This thesis deals with the modeling of heat transfer in porous media subjected to high temperature. An upscaling procedure yields a macroscopic model based on local thermal non-equilibrium. This procedure accounts for local scale coupling effects between radiation and other transfer modes. Radiation modeling uses the generalized radiation transfer equation (GRTE) and, at the commonly encountered limit of a macroscopically optically thick medium, the radiative Fourier law. An original feature of this procedure is the application of the volume averaging method (VAM) to local conservation equations in which radiation transfer is included. This raises three major challenges: - the physical natures of the various transfer modes involved are different. The material system (in which conduction and convection occur) coexists alongside with the photon field, which is homogenized using a statistical method based on the characterization of the radiative properties through statistical distribution functions, continuously defined over the whole volume of the porous medium. - the length scales involved in the upscaling procedure must be compatible with each other. The compatibility of the scale separation constraint (required by the VAM) with the length scale of the radiative homogenization technique (which is limited by the resolution of a tomography of the medium) is established. - the emission phenomenon depends on the temperature of matter. This temperature, specific to the radiation calculation, is obtained by applying a dedicated averaging operator. This operator is associated with an averaging volume whose length scale has to be representative at the local scale. In practice, the resolution of this averaging procedure defines the scale of the coupling between the VAM and the radiation model. The resulting macroscopic model is applied to a one-dimensional, steady case. The solving of this simple case shows the influence of local coupling effects.
2

Conjugate Heat Transfer and Average Versus Variable Heat Transfer Coefficients

Macbeth, Tyler James 01 March 2016 (has links)
An average heat transfer coefficient, h_bar, is often used to solve heat transfer problems. It should be understood that this is an approximation and may provide inaccurate results, especially when the temperature field is of interest. The proper method to solve heat transfer problems is with a conjugate approach. However, there seems to be a lack of clear explanations of conjugate heat transfer in literature. The objective of this work is to provide a clear explanation of conjugate heat transfer and to determine the discrepancy in the temperature field when the interface boundary condition is approximated using h_bar compared to a local, or variable, heat transfer coefficient, h(x). Simple one-dimensional problems are presented and solved analytically using both h(x) and h_bar. Due to the one-dimensional assumption, h(x) appears in the governing equation for which the common methods to solve the differential equations with an average coefficient are no longer valid. Two methods, the integral equation and generalized Bessel methods are presented to handle the variable coefficient. The generalized Bessel method has previously only been used with homogeneous governing equations. This work extends the use of the generalized Bessel method to non-homogeneous problems by developing a relation for the Wronskian of the general solution to the generalized Bessel equation. The solution methods are applied to three problems: an external flow past a flat plate, a conjugate interface between two solids and a conjugate interface between a fluid and a solid. The main parameter that is varied is a combination of the Biot number and a geometric aspect ratio, A_1^2 = Bi*L^2/d_1^2. The Biot number is assumed small since the problems are one-dimensional and thus variation in A_1^2 is mostly due to a change in the aspect ratio. A large A_1^2 represents a long and thin solid whereas a small A_1^2 represents a short and thick solid. It is found that a larger A_1^2 leads to less problem conjugation. This means that use of h_bar has a lesser effect on the temperature field for a long and thin solid. Also, use of ¯ over h(x) tends to generally under predict the solid temperature. In addition is was found that A_2^2, the A^2 value for the second subdomain, tends to have more effect on the shape of the temperature profile of solid 1 and A_1^2 has a greater effect on the magnitude of the difference in temperature profiles between the use of h(x) and h_bar. In general increasing the A^2 values reduced conjugation.
3

Méthode de simulation appropriée aux systèmes complexes : preuve de concept auto-adaptative et auto-apprenante appliquée aux transferts thermiques / Suitable method for complex systems simulation : self-adaptive and self-learning proof-of-concept applied to coupled heat transfer

Spiesser, Christophe 20 June 2017 (has links)
L’augmentation de la puissance informatique disponible permet aux ingénieurs et designers d’aborder par simulation des problèmes de plus en plus complexes (multi-physiques, multi-échelles, géométries intriquées ...). Dans ce contexte, les quadratures à base de discrétisation (FDM, FEM, FVM) montrent leur limite : le besoin d’un grand nombre de sous-domaines qui implique des coûts RAM et CPU prohibitifs. La méthode de Monte-Carlo apparaît plus appropriée, mais son utilisation est verrouillée par la difficulté de générer des modèles probabilistes de systèmes complexes. Pour surpasser ceci, une approche systémique est proposée et implémentée pour créer une preuve de concept appliquée à la simulation des transferts thermiques couplés. Après une étape de validation vis-à-vis de solutions analytiques, l’outil est employé; sur des cas d’illustration (transferts thermiques au sein de bâtiments et dans une centrale solaire) pour étudier ses capacités. L’approche mise en œuvre présente un comportement particulièrement avantageux pour la simulation de systèmes complexes : son temps de calcul ne dépend que des parties influentes du problème. De plus, elles sont automatiquement identifiées, même en présence de géométries étendues ou intriquées, ce qui rend les simulations auto-adaptatives. Par ailleurs, ses performances de calcul ne sont pas corrélées avec le rapport d’échelle caractérisant le système simulé. Ceci en fait une approche douée d’une remarquable capacité à traiter les problèmes à la fois multi-physiques et multi-échelles. En parallèle de l’estimation d’une observable par des chemins d’exploration, l’outil analyse également ces derniers de manière statistique. Ceci lui permet de générer un modèle prédictif réduit de l’observable, procurant ainsi une capacité d’auto-apprentissage à la simulation. Son utilisation peut améliorer les processus d’optimisation et de contrôle-commande, ou simplifier les mesures par méthodes inverses. De plus, elle a aussi permis de mener une analyse par propagation d’incertitudes, affectant les conditions aux frontières, vers l’observable. Enfin, une démonstration d’optimisation, utilisant des modèles réduits générés, a été réalisée. / As computing power increases, engineers and designers tackle increasingly complex problems using simulation (multiphysics, multiscale, intricated geometries ...). In this context, discretization-based quadratures (FDM, FEM, FVM) show their limit: the need of a great number of sub-domains which induces prohibitive consumption of RAM and CPU power. The Monte Carlo method appears to be more appropriate, but the difficulty to build probabilistic models of complex systems forms a bottleneck. A systemic approach is proposed to alleviate it and is implemented to create a proof-of-concept dedicated to the coupled heat transfer simulation. After a successful validation step against analytical solutions, this tool is applied to illustrative cases (emulating heat transfer in buildings and in solar heating systems) in order to study its simulation capabilities.This approach presents a major beneficial behavior for complex systems simulation: the computation time only depends on the influential parts of the problem. These parts are automatically identified, even in intricate or extensive geometries, which makes the simulation self-adaptive. In addition, the computational performance and the system scale ratio are completely uncorrelated. Consequently, this approach shows an exceptional capacity to tackle multiphysics and multiscale problems. Each temperature is estimated using exploration paths. By statistically analyzing these paths during the process, the tool is able to generate a reduced predictive model of this physical quantity, which is bringing a self-learning capacity to the simulation. Its use can significantly improve optimization and control of processes, or simplify inverse measurements. Furthermore, based on this model, an uncertainty propagation analysis has been performed. It quantifies the effect of uncertainties affecting boundary conditions on the temperature. Finally a Particle Swarm Optimization (PSO) process, based on simulations done by the framework, is successfully carried out.
4

Système de refroidissement sec et de production d'eau pour centrale électrosolaire thermodynamique à cycle de Rankine / Dry cooling and water producing system for Rankine cycle concentrated solar power processes

Espargilliere, Harold 08 March 2017 (has links)
Les centrales solaires à concentration industrielles consomment 4 m3/MWh d’eau pour le refroidissement de leur cycle thermodynamique. En environnement aride, cela est susceptible d'induire des conflits d’usages sur une ressource encore plus fondamentale que l’électricité, l'eau. Ce constat met en évidence la nécessité de concevoir des solutions alternatives de refroidissement sèches mais tout aussi efficaces. Le champ solaire d’une centrale CSP représente 50% de son coût d’investissement pour n’être utilisé que de jour pour la production de chaleur nécessaire au cycle thermodynamique. L'approche du sujet de thèse consiste à utiliser cette surface considérable comme macro-échangeur de chaleur avec son environnement via un transfert thermique couplé avec l'air ambiant (convectif) et avec l'espace extra-atmosphérique à 3K (radiatif). Après avoir démontré la pertinence des matériaux du champ solaire pour une telle application, le travail de thèse a montré expérimentalement qu'au-delà d'extraire les chaleurs fatales du cycle thermodynamique, il pouvait aussi produire du froid par transfert radiatif nocturne. Une solution alternative innovante pour le refroidissement des centrales solaires CSP offrant deux nouvelles fonctionnalités à leur champ solaire déjà existant au bénéfice de son amortissement. / Industrial concentrated solar power plants consume 4 m3/MWh of water to cool down their thermodynamic cycle. In arid area, it could induce conflicts of use on a more fundamental resource than electricity. This fact highlights the need to develop alternatives dry cooling technologies but equally effective. The solar field represents 50% of the investment cost of a CSP plant to be used only daily for the heat production needed for the thermodynamic cycle. The approach of the project is to use this huge area as macro-heat exchanger with its surrounding environment through a coupled heat transfer with the ambient air (convective) and with outer space at 3K (radiative). After validating the compatibility of solar field materials for a such application, these research works has shown experimentally that in addition to extract the waste heat of the thermodynamic cycle, it could also produce cold by night radiative cooling. An innovative alternative solution for cooling CSP plants offering two new features to their already existing solar field for the benefit of its paying off.

Page generated in 0.0889 seconds