Spelling suggestions: "subject:"coverage probability"" "subject:"coverage aprobability""
31 |
New Analytical Methods for the Analysis and Optimization of Energy-Efficient Cellular Networks by Using Stochastic Geometry / Nouvelles méthodes d'analyse et d'optimisation des réseaux cellulaires à haute efficacité énergétique en utilisant la géométrie stochastiqueTu, Lam Thanh 18 June 2018 (has links)
L'analyse et l'optimisation au niveau de système sont indispensables pour la progression de performance des réseaux de communication. Ils sont nécessaires afin de faire fonctionner de façon optimale des réseaux actuels et de planifier des réseaux futurs. La modélisation et l'analyse au niveau de système des réseaux cellulaires ont été facilitées grâce à la maîtrise de l'outil mathématique de la géométrie stochastique et, plus précisément, la théorie des processus ponctuels spatiaux. Du point de vue de système, il a été empiriquement validé que les emplacements des stations cellulaires de base peuvent être considérés comme des points d'un processus ponctuel de Poisson homogène dont l'intensité coïncide avec le nombre moyen de stations par unité de surface. Dans ce contexte, des contributions de ce travail se trouvent dans le développement de nouvelles méthodologies analytiques pour l'analyse et l'optimisation des déploiements de réseaux cellulaires émergents.La première contribution consiste à introduire une approche pour évaluer la faisabilité de réseaux cellulaires multi-antennes, dans lesquels les dispositifs mobiles à faible énergie décodent les données et récupèrent l'énergie à partir d’un même signal reçu. Des outils de géométrie stochastique sont utilisés pour quantifier le taux d'information par rapport au compromis de puissance captée. Les conclusions montrent que les réseaux d'antennes à grande échelle et les déploiements ultra-denses de stations base sont tous les deux nécessaires pour capter une quantité d'énergie suffisamment élevée et fiable. En outre, la faisabilité de la diversité des récepteurs pour l'application aux réseaux cellulaires descendants est également étudiée. Diverses options basées sur la combinaison de sélection et la combinaison de taux maximal sont donc comparées. Notre analyse montre qu'aucun système n’est plus performant que les autres pour chaque configuration de système : les dispositifs à basse énergie doivent fonctionner de manière adaptative, en choisissant le schéma de diversité des récepteurs en fonction des exigences imposées.La deuxième contribution consiste à introduire une nouvelle approche pour la modélisation et l'optimisation de l'efficacité énergétique des réseaux cellulaires.Contrairement aux approches analytiques actuellement disponibles qui fournissent des expressions analytiques trop simples ou trop complexes de la probabilité de couverture et de l'efficacité spectrale des réseaux cellulaires, l'approche proposée est formulée par une solution de forme fermée qui se révèle en même temps simple et significative. Une nouvelle expression de l'efficacité énergétique du réseau cellulaire descendant est proposée à partir d’une nouvelle formule de l'efficacité spectrale. Cette expression est utilisée pour l’optimisation de la puissance d'émission et la densité des stations cellulaires de base. Il est prouvé mathématiquement que l'efficacité énergétique est une fonction uni-modale et strictement pseudo-concave de la puissance d'émission en fixant la densité des stations de base, et de la densité des stations de base en fixant la puissance d'émission. La puissance d'émission optimale et la densité des stations de base s'avèrent donc être la solution des équations non linéaires simples.La troisième contribution consiste à introduire une nouvelle approche pour analyser les performances des réseaux cellulaires hétérogènes équipés des sources d'énergie renouvelables, telles que les panneaux solaires. L'approche proposée permet de tenir compte de la distribution spatiale des stations de base en utilisant la théorie des processus ponctuels, ainsi que l'apparition aléatoire et la disponibilité de l'énergie en utilisant la théorie des chaînes de Markov. En utilisant l'approche proposée, l'efficacité énergétique des réseaux cellulaires peut être quantifiée et l'interaction entre la densité des stations de base et le taux d'énergie d'apparition peut être quantifiée et optimisée. / In communication networks, system-level analysis and optimization are useful when one is interested in optimizing the system performance across the entire network. System-level analysis and optimization, therefore, are relevant for optimally operating current networks, and for deploying and planning future networks. In the last few years, the system-level modeling and analysis of cellular networks have been facilitated by capitalizing on the mathematical tool of stochastic geometry and, more precisely, on the theory of spatial point processes. It has been empirically validated that, from the system-level standpoint, the locations of cellular base stations can be abstracted as points of a homogeneous Poisson point process whose intensity coincides with the average number of based stations per unit area.In this context, the contribution of the present Ph.D. thesis lies in developing new analytical methodologies for analyzing and optimizing emerging cellular network deployments. The present Ph.D. thesis, in particular, provides three main contributions to the analysis and optimization of energy-efficient cellular networks.The first contribution consists of introducing a tractable approach for assessing the feasibility of multiple-antenna cellular networks, where low-energy mobile devices decode data and harvest power from the same received signal. Tools from stochastic geometry are used to quantify the information rate vs. harvested power tradeoff. Our study unveils that large-scale antenna arrays and ultra-dense deployments of base stations are both necessary to harvest, with high reliability, a sufficiently high amount of power. Furthermore, the feasibility of receiver diversity for application to downlink cellular networks is investigated. Several options that are based on selection combining and maximum ratio combining are compared against each other. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements.The second contribution consists of introducing a new tractable approach for modeling and optimizing the energy efficiency of cellular networks. Unlike currently available analytical approaches that provide either simple but meaningless or meaningful but complex analytical expressions of the coverage probability and spectral efficiency of cellular networks, the proposed approach is conveniently formulated in a closed-form expression that is proved to be simple and meaningful at the same time. By relying on the new proposed formulation of the spectral efficiency, a new tractable closed-form expression of the energy efficiency of downlink cellular network is proposed, which is used for optimizing the transmit power and the density of cellular base stations. It is mathematically proved, in particular, that the energy efficiency is a unimodal and strictly pseudo-concave function in the transmit power, given the density of the base stations, and in the density of the base stations, given the transmit power. The optimal transmit power and density of base stations are proved to be the solution of simple non-linear equations.The third contribution consists of introducing a new tractable approach for analyzing the performance of multi-tier cellular networks equipped with renewable energy sources, such as solar panels. The proposed approach allows one to account for the spatial distribution of the base stations by using the theory of point processes, as well as for the random arrival and availability of energy by using Markov chain theory. By using the proposed approach, the energy efficiency of cellular networks can be quantified and the interplay between the density of base stations and energy arrival rate can be quantified and optimized.
|
32 |
Global Supply Chain Design Under Stochastic Demand Considering Manufacturing Operations and the Impact of TariffsAlhawari, Omar Ibrahim Salem 20 September 2019 (has links)
No description available.
|
33 |
Família Weibull de razão de chances na presença de covariáveisGomes, André Yoshizumi 18 March 2009 (has links)
Made available in DSpace on 2016-06-02T20:06:06Z (GMT). No. of bitstreams: 1
4331.pdf: 1908865 bytes, checksum: d564b46a6111fdca6f7cc9f4d5596637 (MD5)
Previous issue date: 2009-03-18 / Universidade Federal de Minas Gerais / The Weibull distribuition is a common initial choice for modeling data with monotone hazard rates. However, such distribution fails to provide a reasonable parametric _t when the hazard function is unimodal or bathtub-shaped. In this context, Cooray (2006) proposed a generalization of the Weibull family by considering the distributions of the odds of Weibull and inverse Weibull families, referred as the odd Weibull family which is not just useful for modeling unimodal and bathtub-shaped hazards, but it is also convenient for testing goodness-of-_t of Weibull and inverse Weibull as submodels. In this project we have systematically studied the odd Weibull family along with its properties, showing motivations for its utilization, inserting covariates in the model, pointing out some troubles associated with the maximum likelihood estimation and proposing interval estimation and hypothesis test construction methodologies for the model parameters. We have also compared resampling results with asymptotic ones. Coverage probability from proposed con_dence intervals and size and power of considered hypothesis tests were both analyzed as well via Monte Carlo simulation. Furthermore, we have proposed a Bayesian estimation methodology for the model parameters based in Monte Carlo Markov Chain (MCMC) simulation techniques. / A distribuição Weibull é uma escolha inicial freqüente para modelagem de dados com taxas de risco monótonas. Entretanto, esta distribuição não fornece um ajuste paramétrico razoável quando as funções de risco assumem um formato unimodal ou em forma de banheira. Neste contexto, Cooray (2006) propôs uma generalização da família Weibull considerando a distribuição da razão de chances das famílias Weibull e Weibull inversa, referida como família Weibull de razão de chances. Esta família não é apenas conveniente para modelar taxas de risco unimodal e banheira, mas também é adequada para testar a adequabilidade do ajuste das famílias Weibull e Weibull inversa como submodelos. Neste trabalho, estudamos sistematicamente a família Weibull de razão de chances e suas propriedades, apontando as motivações para o seu uso, inserindo covariáveis no modelo, veri_cando as di_culdades referentes ao problema da estimação de máxima verossimilhança dos parâmetros do modelo e propondo metodologia de estimação intervalar e construção de testes de hipóteses para os parâmetros do modelo. Comparamos os resultados obtidos por meio dos métodos de reamostragem com os resultados obtidos via teoria assintótica. Tanto a probabilidade de cobertura dos intervalos de con_ança propostos quanto o tamanho e poder dos testes de hipóteses considerados foram estudados via simulação de Monte Carlo. Além disso, propusemos uma metodologia Bayesiana de estimação para os parâmetros do modelo baseados em técnicas de simulação de Monte Carlo via Cadeias de Markov.
|
Page generated in 0.0742 seconds