• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparações de populações discretas / Comparison of discrete populations

Watanabe, Alexandre Hiroshi 19 April 2013 (has links)
Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais / One of the main problems in hypothesis testing for homogeneity of survival curves occurs when the failure rate (or intensity functions) are nonproportional. Although the Log-rank test is a nonparametric test most commonly used to compare two or more populations subject to censored data, this test presented two constraints. First, all the asymptotic theory involved with the Log-rank test, is the hypothesis that individuals and populations involved have continuous distributions or at best mixed. Second, the log-rank test does not show well when the intensity functions intersect. The starting point for the analysis is to assume that the data is continuous and in this case suitable Gaussian processes may be used to test the assumption of homogeneity. Here, we cite the Renyi test and Cramér-von Mises for continuous data (CCVM), and Moeschberger see Klein (1997) [15]. Despite these non-parametric tests show good results for continuous data, these may have trouble discrete data or rounded. In this work, we perform a simulation study of statistic Cramér-von Mises (CVM) proposed by Leão and Ohashi [16], which allows us to detect failure rates are nonproportional (crossing of failure rates) subject to censure for arbitrary data discrete or rounded. We also propose a modification of the test log-rank classic data arranged in a contingency table. By applying the statistics proposed in this paper for discrete or rounded data, developed the test shows a power function better than the usual testing
2

Comparações de populações discretas / Comparison of discrete populations

Alexandre Hiroshi Watanabe 19 April 2013 (has links)
Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais / One of the main problems in hypothesis testing for homogeneity of survival curves occurs when the failure rate (or intensity functions) are nonproportional. Although the Log-rank test is a nonparametric test most commonly used to compare two or more populations subject to censored data, this test presented two constraints. First, all the asymptotic theory involved with the Log-rank test, is the hypothesis that individuals and populations involved have continuous distributions or at best mixed. Second, the log-rank test does not show well when the intensity functions intersect. The starting point for the analysis is to assume that the data is continuous and in this case suitable Gaussian processes may be used to test the assumption of homogeneity. Here, we cite the Renyi test and Cramér-von Mises for continuous data (CCVM), and Moeschberger see Klein (1997) [15]. Despite these non-parametric tests show good results for continuous data, these may have trouble discrete data or rounded. In this work, we perform a simulation study of statistic Cramér-von Mises (CVM) proposed by Leão and Ohashi [16], which allows us to detect failure rates are nonproportional (crossing of failure rates) subject to censure for arbitrary data discrete or rounded. We also propose a modification of the test log-rank classic data arranged in a contingency table. By applying the statistics proposed in this paper for discrete or rounded data, developed the test shows a power function better than the usual testing
3

Un test d'adéquation global pour la fonction de répartition conditionnelle

FERRIGNO, Sandie 17 December 2004 (has links) (PDF)
Soient X et Y , deux variables aléatoires. De nombreuses procédures statistiques permettent d'ajuster un modèle à ces données dans le but d'expliquer Y à partir de X. La mise en place d'un tel modèle fait généralement appel à diverses hypothèses que <br />l'on doit valider pour justifier son utilisation. Dans ce travail, on propose une approche globale où toutes les hypothèses faites pour asseoir ce modèle sont testées simultanément. <br />Plus précisément, on construit un test basé sur une quantité qui permet de canaliser toute l'information liant X à Y : la fonction de répartition conditionnelle de Y sachant (X = x) définie par F(y|x)=P(Y<=y|X=x). Notre test compare la valeur prise par l'estimateur polynômial local de F(y|x) à une estimation paramétrique du modèle supposé et rejette sa <br />validité si la distance entre ces deux quantités est trop grande. Dans un premier temps, on considère le cas où la fonction de répartition supposée est entièrement spécifiée et, dans <br />ce contexte, on établit le comportement asymptotique du test. Dans la deuxième partie du travail, on généralise ce résultat au cas plus courant en pratique où le modèle supposé contient un certain nombre de paramètres inconnus. On étudie ensuite la puissance locale du test en déterminant son comportement asymptotique local sous des suites d'hypothèses contigües. Enfin, on propose un critère de choix de la fenêtre d'ajustement qui intervient lors de l'étape d'estimation polynômiale locale de la fonction de répartition conditionnelle.
4

Test d'ajustement d'un processus de diffusion ergodique à changement de régime

Gassem, Anis 07 July 2010 (has links) (PDF)
Nous considérons les tests d'ajustement de type Cramér-von Mises pour tester l'hypothèse que le processus de diffusion observé est un "switching diffusion", c'est-à-dire un processus de diffusion à changement de régime dont la dérive est de type signe. Ces tests sont basés sur la fonction de répartition empirique et la densité empirique. Il est montré que les distributions limites des tests statistiques proposés sont définis par des fonctionnelles de type intégrale des processus Gaussiens continus. Nous établissons les développements de Karhunen-Loève des processus limites correspondants. Ces développements nous permettent de simplifier le problème du calcul des seuils. Nous étudions le comportement de ces statistiques sous les alternatives et nous montrons que ces tests sont consistants. Pour traiter les hypothèses de base composite nous avons besoin de connaître le comportement asymptotique des estimateurs statistiques des paramètres inconnus, c'est pourquoi nous considérons le problème de l'estimation des paramètres pour le processus de diffusion à changement de régime. Nous supposons que le paramètre inconnu est à deux dimensions et nous décrivons les propriétés asymptotiques de l'estimateur de maximum de vraisemblance et de l'estimateur bayésien dans ce cas. L'utilisation de ces estimateurs nous ramène à construire les tests de type Cramér-von Mises correspondants et à étudier leurs distributions limites. Enfin, nous considérons deux tests de type Cramér-von Mises de processus de diffusion ergodiques dans le cas général. Il est montré que pour le choix de certaines des fonctions de poids ces tests sont asymptotiquement " distribution-free ". Pour certains cas particuliers, nous établissons les expressions explicites des distributions limites de ces statistiques par le calcul direct de la transformée de Laplace.

Page generated in 0.0282 seconds