• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 8
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 39
  • 20
  • 17
  • 13
  • 12
  • 12
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Characterization, geographic distribution, and number of upper Eocene impact ejecta layers and their correlations with source craters

Liu, Shaobin. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Billy P.Glass, Dept. of Geological Sciences. Includes bibliographical references.
32

Breeding-site characteristics of pond breeding amphibians at White-horse ponds, Crater Lake National Park /

Bergmann, Stefan A. January 1997 (has links)
Thesis (B.A.)-Oregon State University, 1997. / Includes bibliographical referenes (leaves 20-22). Also available via the Internet.
33

From Earth’s Birth to Crystals: Contextualizing Sunset Crater and other Volcanic Events and Products

Stoffle, Richard W., Toupal, Rebecca S. 11 December 2003 (has links)
A presentation on the cultural interpretation by American Indian ethnic groups connected with Sunset Crater of volcanic events and products of such. The complete report, which can be found in this collections, is titled 'Traditional Resource Use Of The Flagstaff Area Monuments.'
34

Air rise through an immersed granular bed : - bulk and surfaces dynamics

Varas Siriany, Germàn 17 November 2011 (has links) (PDF)
When air is injected at the bottom of an immersed granular layer, it crosses the system by percolating or fracturing. It thus forms several paths that reach the free surface of the layer at different locations. In this thesis, we study this process experimentally (for a three and two dimensional setup), numerically and theoretically. First, we focus on the dynamics of the air invading the medium at short and long time scale, when injecting a continuous air flow. At long time, the typical size of the region explored by the air can be accounted for by a diffusion-like process [1]. We also investigate the effect of gravity by tilting the experimental cell. We contrast the results with numerical simulations for the injection of a fixed volume of air, and characterize the morphology of the invasion zone. We show that the typical height and width of the region explored by the air does not depend on the injected volume only, but also on a dimensionless parameter χ which accounts for the relative effects of the gravity and capillarity [2]. Finally, when increasing the water height above the granular layer, successive grain advection and deposition form a crater consisting of two dunes growing and moving apart one from the other. We observe that the typical size of the crater increases logarithmically with time, independently of the gas emission process [3].References -[1] G.Varas, V. Vidal and J.-C. Géminard, Phys. Rev. E. 83, 011302 (2011).[2] G.Varas, V. Vidal and J.-C. Géminard, Phys. Rev. E. 83, 061302 (2011).[3] G.Varas, V. Vidal and J.-C. Géminard, Phys. Rev. E. 79, 021301 (2009).
35

Ngorongoro crater rangelands : condition, management and monitoring.

Amiyo, Amiyo T. January 2006 (has links)
The Ngorongoro Crater is a volcanic caldera located within the Ngorongoro Conservation Area in Tanzania. The Crater comprises a flat grassland plain surrounded by steep, bushy walls. It contains extremely high densities of animals and is ecologically the central feature of Ngorongoro Conservation Area. The management of the Ngorongoro Crater has changed significantly in recent times, with cattle being removed and fire excluded about 30 years ago. A detailed vegetation assessment was carried out in the Crater floor by Herlocker & Dirschl in 1972. Since then noticeable changes in vegetation structure and composition, with associated changes in wild herbivore numbers have occurred. The original vegetation survey was repeated in this study as accurately as possible using similar point-based techniques in order to quartify changes and form a baseline for management decision-making and future monitoring. In addition to repeating the vegetation survey, the standing biomass was estimated using a Pasture Disc Meter with associated calibration equations. Data were summarised using multivariate classification and ordination techniques in order to delineate six Homogenous Vegetation Units (HVUs) which can be used for management and management planning purposes, define transects and HVUs in terms of dominant species, describe the main species in relation to their occurrence in different associations and determine the fuel load of the standing crop. A key grass species technique was developed for rapid assessment of the Crater rangeland by the Ngorongoro Conservation Area staff who only need to be familiar with the dominant species. Bush surveys using a point centred quarter technique were conducted along transects in two distinct vegetation types, namely the Lerai Forest and Ngoitokitok Acacia xanthophloea forests and the lower caldera scrub vegetation. The data collected from these transacts were analysed to determine density and composition of the vegetation in the various height classes and the overall structure of the vegetation communities, A range monitoring system in conjunction with a controlled burning programme has been developed to provide an objective means of managing the- rangeland of the Ngorongoro Crater. Data revealed that changes have taken place in the vegetation, with a trend towards dominance by taller grasses and dominance by fewer species. Lack of fire has probably contributed to these changes. Reincorporating fire in the crater is recommended. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
36

An assessment of ballistic hazard and risk from Upper Te Maari, Tongariro, New Zealand

Fitzgerald, Rebecca Hanna January 2014 (has links)
Explosive volcanic eruptions frequently expel ballistic projectiles, producing a significant proximal hazard to people, buildings, infrastructure and the environment from their high kinetic and thermal energies. Ballistic hazard assessments are undertaken as a risk mitigation measure, to determine probabilities of eruptions occurring that may produce ballistics, identify areas and elements likely to be impacted by ballistics, and the potential vulnerabilities of elements to ballistics. The 6 August, 2012 hydrothermal eruption of Upper Te Maari Crater, Tongariro, New Zealand ejected blocks over a 6 km2 area, impacting ~2.6 km of the Tongariro Alpine Crossing (TAC), a walking track hiked by ~80,000 people a year, and damaging an overnight hut along the track. In this thesis ballistic hazard and risk from Upper Te Maari Crater are assessed through a review of its eruptive history, field and orthophoto mapping of the 6 August ballistic impact distribution, forward modelling and analysis of possible future eruption scenarios using a calibrated 3D ballistic trajectory model, and analysis of the vulnerability of hikers along the impacted Tongariro Alpine Crossing. Orthophoto mapping of the 6 August ballistic impact crater distribution revealed 3,587 impact craters with a mean diameter of 2.4 m. However, field mapping of accessible regions indicated an average of at least four times more observable impact craters and a smaller mean crater diameter of 1.2 m. By combining the orthophoto and ground-truthed impact frequency and size distribution data, it is estimated that approximately 13,200 ballistic projectiles were generated during the eruption. Ballistic impact distribution was used to calibrate a 3D ballistic trajectory model for the 6 August eruption. The 3D ballistic trajectory model and a series of inverse models were used to constrain the eruption directions, angles and velocities. When combined with eruption observations and geophysical observations and compared to the mapped distribution, the model indicated that the blocks were ejected in five variously directed eruption pulses, in total lasting 19 seconds. The model successfully reproduced the mapped impact distribution using a mean initial particle velocity of 200 m/s with an accompanying average gas flow velocity over a 400 m radius of 150 m/s. Assessment of the vulnerability of hikers to ballistics from the August eruption along the TAC utilised the modelled spatial density of impacts and an assumption that an average ballistic impact will cause serious injury or death (casualty) over an 8 m2 area. It is estimated that the probability of casualty ranged from 1% to 16% along the affected track (assuming an eruption during the time of exposure). Future ballistic hazard and vulnerability along the TAC are also assessed through application of the calibrated model. A magnitude larger eruption (than the 6 August) in which 10x more particles were ejected, doubled the affected length of the TAC and illustrated that the probability of casualty could reach 100% in localised areas of the track. In contrast, ballistics ejected from a smaller eruption did not reach the track as was the case with the 21 November 2012 eruption. The calibrated ballistic model can therefore be used to improve management of ballistic hazards both at Tongariro and also, once recalibrated, to other volcanoes worldwide.
37

Stratified Flow Over Topography: Steady Nonlinear Waves, Boundary Layer Instabilities, and Crater Topography

Soontiens, Nancy January 2013 (has links)
This thesis investigates several aspects of stratified flow over isolated topography in ocean, lake, and atmospheric settings. Three major sub-topics are addressed: steady, inviscid internal waves trapped over topography in a pycnocline stratification, topographically generated internal waves and their interaction with the viscous bottom boundary layer, and flow over large-scale crater topography in the atmosphere. The first topic examines the conditions that lead to very large internal waves trapped over topography in a fluid with a pycnocline stratification. This type of stratification is connected to ocean or lake settings. The steady-state Euler equations of motion are used to derive a single partial differential equation for the isopycnal displacement in supercritical flows under two conditions: a vertically varying background current under the Boussinesq approximation and a constant background current under non-Boussinesq conditions. A numerical method is developed to solve these equations for an efficient exploration of parameter space. Very large waves are found over depression topography when the background flow speed is close to a limiting value. Variations in the background current are examined, as well as comparisons between Boussinesq and non-Boussinesq results. The second topic aims to extend the above subject by considering unsteady, viscous flows. Once again, supercritical flow over topography in a pycnocline stratification generates internal waves. These internal waves interact with the viscous bottom boundary layer to produce bottom boundary instabilities. The three-dimensional aspects of these instabilities are studied under changes in viscosity. The boundary layer instabilities have important implications for sediment transport in the coastal oceans or lakes. Lastly, the final topic is motivated by the connection between dust streaks on the Martian surface and crater topography. Flow over a large 100-km diameter crater is examined with numerical simulations conducted using the Weather Research and Forecasting model. Modifications to the stratification and topography are applied. It is found that a large hydraulic structure of amplitude comparable to the crater depth forms in many cases. This structure may have important implications for dust transport in the atmosphere. In addition, Martian atmospheric parameters are used to study the flow properties under Mars-like conditions.
38

An evaluation of earth resources technology satellite (ERTS-1) imagery for delineating snow extent : Crater Lake National Park, Oregon /

Rose, Paul W. January 1975 (has links)
Thesis (M.S.)-Oregon State University, 1975. / Typescript (photocopy). Research includes the use of high flight aerial (U-2) photographs and ERTS-1 multispectral images. Includes bibliographical references (leaves 93-95).
39

Quantitative analysis of the deformational history and timing of the Sierra Madera impact structure, West Texas

Huson, Sarah Ann. January 2009 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2009. / Title from PDF title page (viewed on June 12, 2009). "School of Earth and Environmental Science." Includes bibliographical references.
40

Mount Mazama and Crater Lake : a study of the botanical and human responses to a geologic event /

Green, Robyn A. January 1900 (has links)
Thesis (M.A.I.S.)--Oregon State University, 1999. / Typescript (photocopy). Includes bibliographical references (leaves 115-124). Also available online.

Page generated in 0.0516 seconds