Spelling suggestions: "subject:"critérios dde seleção dde modelos"" "subject:"critérios dde seleção dee modelos""
1 |
Modelagem e Inferência em Regressão BetaMariano Bayer, Fábio 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:01:37Z (GMT). No. of bitstreams: 2
arquivo6698_1.pdf: 1066555 bytes, checksum: db4d02aef759ceeda67e4d16ca74b282 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente
melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios
de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto
[2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815]
para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro
capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento
do teste da razão de verossimilhanças. Consideramos correções de segunda ordem
para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos,
por meio de uma abordagem matricial, o fator de correção de Bartlett e também
uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas
com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard,
que já está proposto na literatura. Os resultados numéricos evidenciam que as correções
de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard.
No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por
Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão,
assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por
meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto
para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos
independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios
de seleção para modelos com dispersão variável e investigamos, por meio de simulação de
Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho
finito. Percebemos que o processo de seleção conjunta de regressores para a média e para
a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A
seleção de modelos com o esquema proposto, além de requerer um menor custo computacional,
apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios
investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o
critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos
critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar
o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo
verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica
para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o
número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna
viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura
de regressão também para o parâmetro de dispersão introduzimos um maior número de
parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de
seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras,
denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos
os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam
log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados
numéricos evidenciam o bom desempenho dos critérios propostos
|
2 |
MODELO BETA AUTORREGRESSIVO DE MÉDIAS MÓVEIS: CRITÉRIOS DE SELEÇÃO E APLICAÇÕESGuerra, Renata Rojas 27 February 2015 (has links)
Time series modeling and forecasting has many applicability in scientific and technological
researchs. Specifically about variables restricted to the interval (0; 1), which includes
rates and proportions, the classical regression models could not be suitable because they assume
normality. In this context, Rocha and Cribari-Neto (2009) proposed the beta autoregressive
moving average (βARMA) model. It admits that the variable of interest is beta distributed. The
beta distribution is more flexible than the normal distribution and also assumes that de dependent
variable is restricted to the interval (0; 1). Through βARMA is possible to obtain results
closer to the nature of the data. But just choose the better parametric model does not guarantee
the accuracy of the fitted model. To identify the lags is also relevant to ensure the accuracy of
the adjusted model. It is in this purpose that the model selection criteria, or information criteria,
were developed. They compare the explanatory capacity of a group of models and select,
among this group, the model which minimizes the information loss. In this context, this paper
aims to evaluate by Monte Carlo simulations the performance of different selection criteria in
βARMA model. Considering several scenarios and sample sizes, the selection criteria evaluated
was AIC, BIC, HQ, AICc, BICc and HQc. The results indicate that BICc, HQ and HQc had the
better performance identifying the true model among the candidate models. Using the selection
criteria indicated by the simulation study, were also adjusted βARMA models to real data. It
were considered the credit delinquency and the relationship between payroll loan and individual
credit, both variables are from national financial system. It was adjusted the classical ARIMA
models too. This models were compared with βARMA in applications. For both variables was
found a reasonable proximity between the original data and the predicted by the models, with
advantage for βARMA, as much inside as outside the sample. / A modelagem e a previsão de séries temporais é um campo de ampla aplicabilidade em diversas áreas científicas e tecnológicas. No âmbito específico de variáveis restritas ao intervalo
(0; 1), como taxas e proporções, a utilização de modelos clássicos, que supõem normalidade da variável de interesse, pode não ser adequada. Neste contexto, Rocha e Cribari-Neto (2009)
propuseram o modelo beta autorregressivo de médias móveis (β
ARMA). Por assumir que a variável de interesse possui distribuição beta, que é uma distribuição mais flexível que a normal
e com suporte restrito ao intervalo (0; 1), o βARMA possibilita modelagens e previsões mais condizentes com a natureza desses dados. Contudo, apenas a escolha do modelo paramétrico
mais adequado não garante a acurácia do modelo ajustado. A identificação das defasagens a serem incluídas também exerce um papel de relevância neste sentido. É neste propósito que foram
desenvolvidos os critérios de seleção de modelos, ou critérios de informação. Estes comparam as capacidades de explicação entre um grupo de modelos candidatos e selecionam, dentro deste
grupo, o modelo que minimiza a perda de informações. Diante do exposto, este trabalho tem o objetivo de avaliar, via simulações de Monte Carlo, o desempenho de diferentes critérios de seleção
no modelo βARMA. Por meio de um extenso estudo de simulação, considerando diversos cenários e tamanhos amostrais, foram avaliados os desempenhos em amostras de tamanho finito
dos critérios AIC, BIC, HQ, AICc, BICc e HQc. Como resultados numéricos gerais, destaca-se que os critérios HQ, BICc e HQc foram os que alcançaram os melhores níveis de identificação
do modelo verdadeiro. Utilizando os critérios de seleção sugeridos no estudo de simulação também foram ajustados modelos βARMA a dados reais. Para isso, foram considerados o índice
de inadimplência de crédito e a relação entre o crédito consignado e o crédito total pessoa física, ambos do Sistema Financeiro Nacional. Também foram ajustados os clássicos modelos
ARIMA comparativamente ao modelo βARMA na realização de previsões e posterior comparação entre os resultados de ambas as aplicações. Para as duas variáveis há um grau razoável de
proximidade entre os dados originais e previstos, com superioridade do βARMA tanto dentro quanto fora do conjunto de observações utilizado para estimação dos modelos.
|
Page generated in 0.1018 seconds