• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 40
  • 24
  • 18
  • 10
  • 9
  • 8
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 42
  • 40
  • 37
  • 34
  • 30
  • 26
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Design and Analysis of a Collagenous Anterior Cruciate Ligament Replacement

Walters, Valerie Irene 26 May 2011 (has links)
The anterior cruciate ligament (ACL) contributes to normal knee function, but it is commonly injured and has poor healing capabilities. Of the current treatments available for ACL reconstruction, none replicate the long-term mechanical properties of the ACL. It was hypothesized that tissue-engineered scaffolds comprised of reconstituted type I collagen fibers would have the potential to yield a more suitable treatment for ACL reconstruction. Ultra-violet (UV) radiation and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were investigated as possible crosslinking methods for the scaffolds, and EDC crosslinking was deemed more appropriate given the gains in strength and stiffness afforded to individual collagen fibers. Scaffolds were composed of 54 collagen fibers, which were made using an extrusion process, organized in accordance with a braid-twist design; the addition of a hydrogel (gelatin) to this scaffold was also investigated. The scaffolds were tested mechanically to determine ultimate tensile strength (UTS), Young's modulus, and viscoelastic properties. Scaffolds were also evaluated for the cellular activity of primary rat lateral collateral ligament (LCL) and medial collateral ligament (MCL) fibroblast cells after 7, 14, and 21 days. The crosslinked scaffolds without gelatin exhibited mechanical and viscoelastic properties that were more similar to the human ACL. Cellular activity on the crosslinked scaffolds without gelatin was observed after 7 and 21 days, but no significant increase was observed with time. Although more studies are needed, these results indicate that a braid- twist scaffold (composed of collagen fibers) has the potential to serve as a scaffold for ACL replacement. / Master of Science
102

Molecular Biology Approaches to Address Questions About GPCR Function

Philipp, Karolin 08 November 2024 (has links)
No description available.
103

The Green Functionalization and Crosslinking of Polyisobutylenes for Bioadhesive Employment

Koeth, Richard A., II 13 December 2012 (has links)
No description available.
104

A Method for the Quantitative Analysis of Protein-Protein Interactions In Vivo

Rall, Nils Arne 22 March 2016 (has links)
No description available.
105

Development of crosslinkable, thermoplastic polyurethanes for cardiovascular prostheses

Theron, Jacobus Petrus 12 1900 (has links)
Thesis (PhD (Process Engineering))--University of Stellenbosch, 2006. / Existing thermoplastic polyurethanes (TPUs), used in the manufacturing of cardiovascular devices, still have unproven long-term biostability and may be prone to excessive plastic deformation when subjected to cyclic loading. These negative aspects can be attributed to, among other factors, the weak nature of virtual crosslinking through microphase separation. The modification and covalent crosslinking of existing medical grade polyurethanes with unsaturated acyl chlorides are thus proposed to improve these properties. A model compound study was used to find a suitable acyl chloride (4-pentenoyl chloride), confirm the intended carbamate nitrogen as successful reaction site and to optimize the chemistry of the reaction. Two medical grade polyurethanes, Pellethane® 2363- 80AE (Pellethane) and PurSil 35-80A (PurSil), were subsequently successfully modified with 4-pentenoyl chloride. The degree of modification could be accurately controlled (R2 = 0.99) to between 4.5% to 20.0% and between 11.5% to 18.5% for the respective polyurethanes. The degree of modification and method of crosslinking were then optimized to obtain the required mechanical properties (i.e. minimum hysteresis). The hysteresis and creep of the modified and crosslinked Pellethane were reduced by 42.5% and 44.0%, respectively, while the hysteresis of the modified and crosslinked PurSil was reduced by 12.9%. The chemical stability of Pellethane (control) modified Pellethane (15% modification) and crosslinked Pellethane (Pell15.0) was evaluated in an in vitro degradation study. The hysteresis of the crosslinked polymer was at least 27.5% better when compared to Pellethane, and showed a significant resistance to surface degradation (as studied with scanning electron microscopy). Although the soft phases in both polyurethanes are vulnerable toward degradation, it was not as pronounced in Pell15.0, mainly due to the restriction of chain movement resulting from the crosslinking. Small-diameter tubular constructs, with similar fiber and wall thicknesses, were electrospun from Pellethane and the 15% modified Pellethane. A standard electrospinning technique was used in the case of the former while in the case of the latter a novel “reactive” electrospinning technique was used for the in situ crosslinking of the novel material, while simultaneously forming the tubular constructs. It is suggested that the manufacturing of Pell15.0 be scaled up to produce adequate amounts of material to enable the extrusion and in vivo evaluation of e.g. pacemaker leads. A circulatory animal model, e.g. a senescent baboon model, could be used to evaluate and further optimize the electrospun tubular constructs.
106

Mécanisme de salissage et de nettoyage en surface de matériaux polymères

Chen, Xing January 2016 (has links)
Résumé: Le développement de l’industrie des polymères fourni de plus en plus de choix pour la formulation de matériaux pour les couvre-planchers. Les caoutchoucs, le PVC et le linoleum sont les polymères habituellement utilisés dans l’industrie des couvre-planchers. Ce projet répond à un problème de facilité de nettoyage des couvre-planchers de caoutchouc qui sont reconnus pour être mous, collants et ayant une surface rugueuse. L’INTRODUCTION couvrira l’état actuel de la recherche sur les couvre-planchers, surtout en regard au problème de la «nettoyabilité». La théorie pertinente et les informations générales sur les polymères, les composites polymériques et la science des surfaces seront introduites au CHAPITRE 1. Ensuite, le CHAPITRE 2 couvrira la méthode utilisée pour déterminer la nettoyabilité, l’évaluation des résultats ainsi que l’équipement utilise. Le CHAPITRE 3, discutera des premières expériences sur l’effet de la mouillabilité, la rugosité et la dureté sur la facilité de nettoyage des polymères purs. Plusieurs polymères ayant des surfaces plus ou moins hydrophobes seront investigués afin d’observer leur effet sur la nettoyabilité. L’effet de la rugosité sur la nettoyabilité sera investigué en imprimant une rugosité définie lors du moulage des échantillons; l’influence de la dureté sera également étudiée. Ensuite, un modèle de salissage/nettoyage sera établi à partir de nos résultats et observations afin de rationaliser les facteurs, ou « règles », qui détrminent la facilité de nettoyage des surfaces. Finalement, la réticulation au peroxyde sera étudiée comme une méthode de modification des polymères dans le but d’améliorer leur nettoyabilité; un mécanisme découlant des résultats de ces études sera présenté. Le CHAPITRE 4 étendra cette recherche aux mélanges de polymères; ces derniers servent habituellement à optimiser la performance des polymères purs. Dans ce chapitre, les mêmes tests discutés dans le CHAPITRE 3 seront utilisés pour vérifier le modèle de nettoyabilité établi ci-haut. De plus, l’influence de la non-miscibilité des mélanges de polymères sera discutée du point de vue de la thermodynamique (DSC) et de la morphologie (MEB). L’utilisation de la réticulation par peroxyde sera étudié dans les mélanges EPDM/ (E-ran-MAA(Zn)-ran-BuMA) afin d’améliorer la compatibilité de ces polymères. Les effets du dosage en agent de réticulation et du temps de cuisson seront également examinés. Finalement, un compatibilisant pré-réticulé a été développé pour les mélanges ternaires EPDM/ (E-ran-MAA(Zn)-ran-BuMA)/ HSR; son effet sur la nettoyabilité et sur la morphologie du mélange sera exposé. / Abstract: The development of industrial polymers provides more choices to the design of flooring materials. Rubbers, PVC and linoeleum are the most used polymers in the flooring industry. This project stems from the problem of cleanability (ease of cleaning) of the surface of rubber tile flooring which is known as a soft, sticky and rough surface. In the introduction, the current situation of research on the polymer flooring industry, especially the study on the cleaning problem will be introduced. The relevant theory and general information on polymers, polymer composites and surface science will be introduced in CHAPTER 1. In CHAPTER 2 different approaches, protocols and equipment to evaluate cleanability will be presented. The initial experiments and results (CHAPTER 3) will involve various fundamental concepts on surface wettability, roughness and hardness, as these properties can all influence the surface soiling and cleanability. In single-polymer systems, dozens of polymer materials with a hydrophobic or hydrophilic surface were investigated to observe their soiling and cleaning properties. The effect of roughness was also studied by surface printing method which is used to control the surface topography. Likewise, the influence of surface hardness on cleanability was also investigated with different polymer materials. From the above results and observations, a surface soiling/cleaning model is proposed in attempt to simplify the ― rules ‖ which determine the surface cleanability. Finally, peroxide crosslinking was investigated as a matrix modification method to improve the surface cleanability. The second part of the experiments and results (CHAPTER 4) extends to investigations of polymer blends, in attempt to optimize the performance of single-polymer materials. In this chapter, the surface cleaning model and its relevant rules are examined by the wettability, roughness and hardness tests discussed in CHAPTER 3. The influence of immiscibility on cleaning performance will be discussed in polymer blends from the point of view of thermodynamics (DSC) and morphology (SEM). In order to improve the compatibility in polymer blends, peroxide crosslinking was performed in EPDM/ (E-ran-MAA(Zn)-ran-BuMA) blends. The dosage of curing (cross-linking) agent and curing time were investigated to observe the influence of these experimental conditions on cleanability. Finally, a blend compatibilizer was designed to improve the compatibility of the EPDM/ (E-ran-MAA(Zn)-ran-BuMA)/HSR blends.The compatibilizer prepared by partial pre-crosslinking of EPDM (Nordel) and E-ran-MAA(Zn)-ran-BuMA (Surlyn) was incorpo rated in polymer composites and its influence on cleanability was studied and explained on the basis of changes in morphology of the blend polymer matrix.
107

Enhancing performance, durability and service life of industrial rubber products by silica and silane fillers

Wang, Li January 2007 (has links)
Typical rubber compounds used to manufacture industrial products such as tyres, hoses, conveyor belts, acoustics, shock pads, and engine mountings contain up to eight classes of chemical additives· including curing agents, accelerators, activators, processing aids, and antidegradants. The cure systems in these articles often consists of primary and secondary accelerators, primary and secondary activators, and elemental sulphur. Recent legislation impacting upon the working environment, safety and health has imposed a considerable burden on the manufacturers of rubber compounds to meet various obligations. The selection of raw materials and manufacturing processes that do not harm the environment is of great importance. A novel technique for preparing rubber formulations using crosslinking nanofillers such as silanised precipitated silica has been developed in this research. The silica surfaces were pre-treated with bis[3-triethoxysilylpropyl-] tetrasulphane coupling agent (TESPT).· TESPT is a sulphur containing bifunctional organosilane which chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulphur-cure systems. The tetrasulphane groups of the TESPT are rubber reactive and react in the presence of accelerator at elevated temperatures, i.e.140 -260°C, with or without elemental sulphur being present, to form crossIinks in rubbers containing chemically active double bonds for example styrene-butadiene rubber (SBR) and polybutadiene rubber (BR) .. SBR and BR rubber compounds containing 60 phr of TESPT pre-treated silica nanofiller were prepared. The silica particles were fully dispersed in the rubber, which was cured primarily by using sulphur in TESPT. The reaction between the tetrasulphane groups of TESPT and the rubbers was optimised by incorporating different accelerators and activators in the rubber. The mechanical properties of the rubber vulcanisates such as hardness, tear strength, tensile strength, elongation at break, stored' energy density at break, abrasion resistance, modulus and cyclic fatigue life were increased significantly when the treated silica filler was added. The need for the accelerator and activator was dependent on the composition of the rubber. Interestingly, the rubbers were fully cured without the use of elemental sulphur, secondary accelerator and secondary activator. As a result, a substantial reduction in the use of the curing chemicals was achieved without compromising the important properties of rubber compounds which are essential for maintaining long life and good performance of industrial rubber products in service. This approach has also helped to improve health and safety within the workplace and minimise harm to the enviromnent.Furthermore, a significant cost saving was achieved after reducing the number of curing chemicals in the rubber.
108

Development of Cartilage-Derived Matrix Scaffolds via Crosslinking, Decellularization, and Ice-Templating

Rowland, Christopher January 2015 (has links)
<p>Articular cartilage is a connective tissue that lines the surfaces of diarthrodial joints; and functions to support and distribute loads as wells as facilitate smooth joint articulation. Unfortunately, cartilage possesses a limited capacity to self-repair. Once damaged, cartilage continues to degenerate until widespread cartilage loss results in the debilitating and painful disease of osteoarthritis. Current treatment options are limited to palliative interventions that seek to mitigate pain, and fail to recapitulate the native function. Cartilage tissue engineering offers a novel treatment option for the repair of focal defects as well as the complete resurfacing of osteoarthritic joints. Tissue engineering combines cells, growth factors, and biomaterials in order to synthesize new cartilage tissue that recapitulates the native structure, mechanical properties, and function of the native tissue. In this endeavor, there has been a growing interest in the use of scaffolds derived from the native extracellular matrix of cartilage. These cartilage-derived matrix (CDM) scaffolds have been show to recapitulate the native epitopes for cell-matrix interactions as well as provide entrapped growth factors; and have been shown to stimulate chondrogenic differentiation of a variety of cell types. Despite the potent chondroinductive properties of CDM scaffolds, they possess very weak mechanical properties that are several orders of magnitude lower than the native tissue. These poor mechanical properties lead to CDM scaffolds succumbing to cell-mediated contraction, which dramatically and unpredictably alters the size and shape of CDM constructs. Cell-mediated contraction not only prevents the fabrication of CDM constructs with specific, pre-determined dimensions, but also limits cellular proliferation and metabolic synthesis of cartilage proteins. This dissertation utilized collagen crosslinking techniques as well as ice-templating in order to enhance the mechanical properties of CDM scaffolds and prevent cell-mediated contraction. Furthermore, the decellularization of CDM was investigated in order to remove possible sources of immunogenicity. This work found that both physical and chemical crosslinking techniques were capable of preventing cell-mediated contraction in CDM scaffolds; however, the crosslinking techniques produced distinct effects on the chondroinductive capacity of CDM. Furthermore, the mechanical properties of CDM scaffolds were able to be enhanced by increasing the CDM concentration; however, this led to a concomitant decrease in pore size, which limited cellular infiltration. The pore size was able to be rescued through the use of an ice-templating technique that led to the formation of large aligned grooves, which enabled cellular infiltration. Additionally, a decellularization protocol was developed that successfully removed foreign DNA to the same order of magnitude as clinically approved materials, while preserving the native GAG content of the CDM, which has been shown to be critical in preserving the mechanical properties of the CDM. Altogether, this body of work demonstrated that dehydrothermal crosslinking was best suited for maintaining the chondroinductive capacity of the CDM, and given the appropriate scaffold fabrication parameters, such as CDM concentration and ice-templating technique, dehydrothermal treatment was able to confer mechanical properties that prevented cell-mediated contraction. To emphasize this finding, this work culminated in the fabrication of an anatomically-relevant hemispherical scaffold entirely from CDM alone. The CDM hemispheres not only supported chondrogenic differentiation, but also retained the original scaffold dimensions and shape throughout chondrogenic culture. These findings illustrate that CDM is a promising material for the fabrication of tailor-made scaffolds for cartilage tissue engineering.</p> / Dissertation
109

Fabrication of Anisotropic Sol-gel Materials by Photo-Crosslinking

Wingfield, Charles 23 April 2012 (has links)
This is a report on the fabrication and characterization of anisotropic, porous materials: functionally graded cellular and compositionally anisotropic aerogels. This new class of materials was fabricated by photopolymerization of selected regions of a homogeneous monolith using visible light. Visible light is not significantly absorbed and not significantly scattered by organic molecules and oxide nanoparticles in wet gels and it allows fabrication of deeply penetrating, well-resolved patterns. Simple variations of the exposure geometry allowed fabrication of a wide variety of anisotropic materials without requiring layers or bonding.
110

Mapování protein-proteinových interakcí systému cytochromu P-450 metodami chemické modifikace a hmotnostní spektrometrie / Protein-protein interaction mapping of cytochrome P-450 by methods using chemical modification and mass spectrometry

Ječmen, Tomáš January 2010 (has links)
Cytochromes P-450 (P450s) belong to haemoprotein superfamily and they are responsible for metabolism of a wide variety of compounds, among others many drugs and carcinogens. P450s serve as the terminal oxidases in the mixed function oxidase system in cooperation with a redox partner NADPH: cytochrome P450 reductase (CPR) providing input of two electrons to the reaction cycle of P450. The CPR can be substituted by other redox partner of P450, cytochrome b5 (cyt b5), to deliver the second electron. Three dimensional structure of P450 is required in order to fully understand its reaction mechanism. At the present time, a homology model of cytochrome P-450 2B4 (CYP 2B4) is available in our laboratory. In this study, the mapping of interaction domain between CYP 2B4 and cyt b5 employing a crosslinking agent EDC to form amide bonds between close complementary charged amino acid side chains was the first goal. We have identified five interacting amino acid pairs in total using mass spectrometry (MS). The second research interest was to verify and refine the CYP 2B4 model using a photoaffinity labelling with N-(p-azidobenzyl)-N-methyl-p-aminophenylamine probe. This photoreactive probe is known as CYP 2B4 ligand binding to the central iron atom of haem. After photoactivation the arginine 197 was found by MS...

Page generated in 1.6192 seconds