• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 29
  • 13
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 118
  • 22
  • 22
  • 20
  • 19
  • 18
  • 17
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Surface properties of cassiterite and their implications for selective separation in froth flotation

Wu, Haosheng 22 April 2024 (has links)
In this thesis, the surface properties of cassiterite due to the changes of two material properties, i.e. crystallographic orientation, and Fe as a minor element in the lattice, and their implication for selective separation are studied. In the study of the crystallographic orientation of cassiterite, the physicochemical behaviors of the surfaces SnO2(110), SnO2(100), as well as SnO2(001) were investigated by using high-resolution direct force spectroscopy. The measurements were conducted between a silica sphere and sample surfaces in 10 mmol/L KCl between pH 3.1 and 6.2 using colloidal probe atomic force microscopy (cp-AFM-hydrophilic). Dissimilar interactions were detected on different-oriented surfaces. The pH values where the force switched from positive to negative can be clearly distinguished and be ordered as SnO2(100) < SnO2(001) ≈ SnO2(110). The most potent attractive force was found to be on the (110) cassiterite surface compared to the (100) and (001) cassiterite surfaces at lower pH. By fitting the force curves in the DLVO theory framework, anisotropic surface potentials were computed between the three sample surfaces following a similar trend as force interaction. This differential surface potential might be due to the difference in Sn cation density and electron affinity. To study the implication of crystallographic orientation to surfactant adsorption, we used Aerosol22 (sulfosuccinamate) as an anionic collector for cassiterite flotation to functionalize the different samples at pH 3. The contact angle measurements, the topography visualizations by AFM, and the force measurement using cp-AFM with hydrophobized spheres (cp-AFM-hydrophobized) have shown that Aerosol22 was adsorbed on the sample surfaces inhomogeneously. The adsorption followed the order of SnO2(110) > SnO2(100) > SnO2(001) in the concentration from 1 × 10−6 mol/L to 1 × 10−4 mol/L. In the study of Fe as a minor element in the lattice of cassiterite, synthetic pure cassiterite, and cassiterite doped with two different Fe contents were successfully recrystallized by means of sintering. Their crystal structure and chemical compositions are characterized by X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) analysis. Their floatability was studied by microflotation with a diphosphonic acid surfactant named Lauraphos301 as a collector. Unlike the addition of ferric ions in solution, which strongly depressed the floatability of all the cassiterite samples, a much higher flotation efficiency of the Fe-doped cassiterite samples was found especially at lower collector concentrations. The cassiterite floatability is proportional to the Fe content in the cassiterite at a broad range of pH, and the recovery has the following order: Cassiterite with 1417 ppm Fe > cassiterite with 1165 ppm Fe > pure cassiterite The electrokinetic behavior of the cassiterite samples with and without the collector was studied by electrophoretic measurements and revealed that the chemical interaction dominated the adsorption. With the help of the particle shape analysis, a more angular shape was found for the Fe-doped cassiterite samples. Moreover, without the influence of particle shape, abundant adsorption of Lauraphos301 was found on the Fe-doped cassiterite samples by AFM topography imaging. The minor amount of Fe in the cassiterite lattice and a more angular shape of the Fe-doped cassiterite samples were believed to enhance floatability collectively. The study reveals that the influence of the chemical composition of the minerals on flotation was almost inextricably bound up with particle morphology and emphasizes the importance of considering both factors and investigating them individually for the flotation study.
72

Development and Evaluation of Transparent, Aligned Polycrystalline Alumina as an Infrared Window Candidate for Hypersonic Flight

Ashwin Sivakumar (18437757) 28 April 2024 (has links)
<p dir="ltr">Hypersonic flight is the key to unlocking a nation’s strategic advantage in this century’s military theater. Military powerhouses such as the United States, Russia, India, China, Australia, and the EU publicly possess hypersonic weapons capabilities. Such technology enables intercontinental travel orders of magnitude faster than conventional flights. A trip halfway across the world would take not twenty hours, but two. However, the level of thermal and chemical load the aircraft and these electronic equipment experience while at such high speeds cause them to fail. Thus, ceramic window materials are used to act as a barrier between the hypersonic flight environment and this sensitive electronic equipment. Such materials need to be both mechanically robust, but transparent within the relevant infrared ranges used for target detection. Single-crystal sapphire (alumina) is an infrared window material readily available, plentiful, and easy to microstructurally control and manufacture, but not optimal. Its transparency range is limited to the optical and near-infrared, while it exhibits poor mechanical and dielectric strength. Polycrystalline alumina (PCA) has recently been shown to possess more favorable infrared window characteristics as opposed to its single-crystal counterpart. This is achieved by processing using a platelet powder morphology in a single processing step – hot-pressing. Full densification (> 99.5%) of PCA samples was achieved, demonstrating maximum of 84% optical transparency, but accompanied by grain growth (60+µm), resulting in lower mechanical strength. This research thus works on a two-fold approach to minimizing the grain growth of PCA. Optical tests demonstrated favorable results for lowering isothermal temperatures to reduce grain growth. Weibull values of m = 28.8 and m = 9.7 from 4 point-flexure tests were obtained (ASTM 1161a). Thermal loading via ablation testing compared PCA samples to industry alternatives (single-crystal sapphire) and (equiaxed alumina). Ablation tests revealed the benefit of polycrystalline alumina over sapphire. The benefit of lower isothermal sintering temperatures for reduced grain growth resulted in higher peak load before failure, resulting in greater characteristic strength and minimal transmission lost during a minute of oxyacetylene heat flux exposure. Finally, additional work was done on nanoceramic MgO-Y<sub>2</sub>O<sub>3</sub>, in a ceramic-processing method like that of PCA. These findings will also be discussed.</p>
73

Einfluss der Korngefüge industriell hergestellter mc- Siliziumblöcke auf die rekombinationsaktiven Kristalldefekte und auf die Solarzelleneffizienz

Lehmann, Toni 26 May 2016 (has links) (PDF)
The efficiency of multicrystalline (mc) silicon solar cells depends strongly on the fraction of recombination active crystal defects. This work focuses on a systematic analysis of how the area fraction of recombination active crystal defects and thus the solar cell efficiency is af-fected by the grain structure of mc-silicon wafers, i.e. grain size, grain orientation and type of the grain boundaries between adjacent grains. For that purpose a new characterization method was developed which allows the measurement of the grain orientation and grain boundary type of full 156x156 mm² mc-silicon wafers. The results of the grain structure analysis were correlated with the etch pit density, the recombination active area fraction measured by photo-luminescence imaging, and the solar cell efficiency in order to quantify the most important features of the grain structure, which were relevant to obtain high quality mc-silicon wafer material. For the determination of the grain orientation and grain boundary type two metrology sys-tems were combined. The so-called grain detector determines the geometrical data of each grain (size and form) by a reflectivity measurement. Afterwards the wafer with the geomet-rical information of all grains is transferred into the so-called Laue Scanner. This system irra-diates each grain larger 3 mm² with white x-rays and creates a backscatter diffraction pattern (Laue pattern) for each grain. From this Laue pattern the grain orientation and the grain boundary type of neighboured grains is calculated and statistically analysed in combination with the geometrical data of the grain detector. In this work the grain structure of twelve industrially grown mc-silicon bricks, which were produced by different manufacturers, and two laboratory grown bricks were investigated. Seven of these bricks show a fine grain structure. This material named class F is considered to be typical for so-called High Performance Multi (HPM) silicon. The other bricks show a coarse-grained structure. This grain structure was called class G and corresponds to the con-ventional mc-silicon material. The results show that the grain structures of the start of the crystallization process differ sig-nificantly between class F and class G. The class F mc-silicon wafers have a uniform initial grain size (characterized by coefficient of variation CV¬KG < 2.5) and grain orientation (charac-terized by coefficient of variation CVKO < 1.5) distribution with a small mean grain size (< 4 mm²) and a high length fraction of random grain boundaries (> 60 %) in comparison to the class G wafers. Despite the totally different initial grain structure for the class F and class G bricks, the grain structure of the wafers which represent the end of the crystallization process is more or less comparable. It can be concluded that the development of the grain structure along the crystal height of the class F bricks is driven by an energy minimization due to the surface energy and the grain boundary energy, that means that the share of (111) oriented grains having the lowest surface energy and the share of ∑3 grain boundaries having the lowest interface energy increase from the start of crystallization to the end. This phenomenon could not be observed for the class G bricks, which show a decreasing ∑3 length fraction and a decreasing area fraction of {111} oriented grains. This energetically unfavourable grain structure development is not clear so far but it means another kind of energy minimization effect must exist within class G. This could be for instance the formation of dislocations. The grain structure investigations show clearly that especially the initially fine-grained struc-ture of the class F bricks, i.e. at the start of crystallization, influences beneficially the area fraction of recombination active defects and the solar cell efficiency subsequently. This ob-servation can be explained as follows. Reduced dislocation cluster formation: • The small grain sizes in combination with the low length fraction of ∑3 grain bounda-ries capture the dislocations within a grain. Dislocations are not able to move across the grain boundaries which have not the ∑3-type within moderate stress and tempera-ture fields. This prohibits the formation and expansion of large dislocation cluster. • The previously described energetically driven grain selection and the continuously in-creasing grain size from bottom to top leads to an overgrowth of grains. This means that also dislocated grains will disappear which also prohibits the formation of large dislocation cluster. Reduced possibility of dislocation formation: • Compared to the class G bricks the area fraction of {111} oriented grains is reduced. Therefore, the possibility of the formation of dislocations is reduced, because they would be activated first in {111} oriented grains taking the Schmidt factor in account which is lowest for {111} oriented grains. After the dislocation generation within a {111} oriented grain, the dislocation can move forward on 3 of 4 possible {111} slip planes which have an angle of 19.5° with regard to the growth direction. No other ori-entation has more slip planes for the dislocation movement which have an angle smaller 20° with regard to the growth direction. These arguments in combination with the high reproducibility of the characteristic initial class F structure can explain the observed low recombination active area fraction from start to end of crystallization which was smaller 5 % and especially the low variation of 2 % of the electrical active wafer area in between the class F bricks. One can also easily explain the higher recombination active area fraction up to 14 % and the large variation of 10 % between the class G bricks due to the obtained grain structure data. These differences in the recombination active area fractions are reflected in the solar cell efficiency which is 0.4 % higher for the class F bricks compared to the class G bricks. In consideration of the above mentioned reasons it is not beneficial for the industrial ingot production technology to increase the ingot height further, due to the fact that the advanta-geous initial grain structure properties of class F bricks disappear with increasing crystal height.
74

Etude par la méthode du champ de phase à trois dimensions de la solidification dirigée dans des lames minces / Phase field study of three-dimensional directional solidification in thin samples

Ghmadh, Jihène 15 December 2014 (has links)
Nous étudions numériquement la solidification directionnelle d'un alliage binaire à base de succinonitrile. Pour cela, nous développons un code s'appuyant sur le formalisme du champ de phase adapté au cas de la croissance dans des lames minces. Les résultats numériques obtenus sont comparés qualitativement et quantitativement avec les observations expérimentales. Une bonne confirmation des lois expérimentales et de nouvelles informations sur la dynamique des microstructures sont obtenues.La direction de croissance est généralement limitée par deux axes : l'axe cristallin principal et la direction du gradient thermique. Une première partie de la thèse porte sur l'étude des effets de la désorientation de l'axe cristallin sur la direction de croissance des structures et sur leurs morphologies. Nos résultats sont directement comparés à la loi expérimentale qui donne la réponse en orientation des microstructures sur l'ensemble de leur domaine d'existence en fonction du nombre de Péclet. Nous obtenons un accord très satisfaisant entre simulation et expérience. Dans la seconde partie de la thèse, une instabilité oscillante (mode 2λ − O) est étudiée en se basant sur le diagramme de stabilité expérimental. Dans ce mode deux cellules voisines oscillent en opposition de phase en largeur et en hauteur. Nos simulations reproduisent ce mode oscillant dans des lames minces et permettent une comparaison quantitative avec les expériences. Le régime des oscillations forcées est notamment exploré pour obtenir des informations sur la réponse en fréquence du système. / We report on a numerical study of directional solidification in thin samples of succinonitrile-based dilute alloy. This thesis is based on 3D phase-field simulations. Numerical results are compared qualitatively and quantitatively with experimental observations. The comparison gives a good confirmation of the experimental laws, while providing new information on the dynamics of microstructures. Growth direction of the microstructure is constrained by two axes : the main crystal axis and the direction of the thermal gradient. Simulations allow us to test the variations of the growth direction and the microstructure stability at various misorientation angles. Our results are directly compared with the experimental law that gives the microstructure orientation response in a large domain of Péclet numbers. We obtain a good agreement, both on qualitative and quantitative grounds, between experiments and 3D simulations.In the second part of this manuscript, an oscillatory instability (2λ − O mode) is numerically studied. This mode involves oscillations of both cell width and cell tip position. This instability is reproduced in numerical simulations with the aim of allowing a fine and relevant comparison with experiments of the domain of existence and the periods of oscillation. In particular, the forced oscillation regime is explored to obtain information on the frequency response of the system.
75

Crystalwalk: um software didático-interativo para síntese e visualização de estruturas cristalinas / Crystalwalk: an educational interactive software for synthesis and visualization of crystal structures

Bardella, Fernando 08 July 2016 (has links)
Este trabalho documenta o processo de desenvolvimento de um software didático-interativo para síntese e visualização de estruturas cristalinas intitulado CrystalWalk (CW). Sua criação foi justificada inicialmente pela percepção, colhida junto a atores sociais, de deficiências nas ferramentas de ensino-aprendizagem relacionadas ao estudo de estruturas cristalinas de materiais. Posteriormente, um levantamento do estado da arte dos softwares cristalográficos existentes revelou oportunidades para o desenvolvimento de um novo software com preocupação eminentemente didática. Na especificação e elaboração do CW, foram preconizados os princípios do software livre, da acessibilidade e da democratização do conhecimento. Adotou-se o estado da arte de tecnologias e serviços para desenvolvimento de aplicações web interativas, tais como plataforma HTML5/WebGL, arquiteturas orientadas a serviços (SOA) e sistemas distribuídos responsivos, resilientes e elásticos. Para facilitar o entendimento e a síntese de estruturas cristalinas, foi proposto um inédito processo passo a passo baseado no conceito \"rede + motivo = estrutura cristalina\", que exige a participação ativa e consciente do usuário. Inseriu-se também uma ferramenta denominada \"narrativa didática\", por meio por meio da qual o usuário registra sequências de visualização acompanhadas de anotações e que podem ser compartilhadas múltiplas narrativas permitem atender a diferentes perfis de aprendizagem. Também foram incorporadas com sucesso funcionalidades didáticas eficazes para garantir plena acessibilidade aos recursos do CW e para aumentar seu alcance social, tais como o suporte à interação avançada e às tecnologias de interface de realidade virtual, o suporte à impressão 3D e a oferta de uma plataforma de publicação online. Na avaliação dos produtos gerados, o principal critério foi o atendimento às demandas dos atores sociais, que foram empoderados ao final do processo. O CW é a primeira plataforma a superar a maioria dos problemas apontados e das limitações encontradas nos instrumentos didáticos existentes sobre a temática deste trabalho, impactando positivamente o acesso e a democratização do conhecimento, por meio da construção coletiva, do estímulo à colaboração e da autonomia e independência tecnológicas. / This work documents the process of development of an educational interactive software for synthesis and visualization of crystal structures (crystallographic software) named CrystalWalk (CW). The development of CW was justified by educational problems that were the identified and defined from direct stakeholders inquiry process about the lack of proper didatic tools for teaching crystal structure topic in materials science and engineering disciplines. Further, an evaluation of the existing crystallographic softwares has shown opportunities for the development of a new software, focused on the educational approach. The process of development and implementation of CrystalWalk was guided by principles of free software, accessibility and democratization of knowledge, adopting state of art technologies for the development of interactive web applications, such as HTML5/WebGL, service oriented architecture (SOA) and responsive, resilient and elastic distributed systems. CW proposes an unprecedented step-by-step crystal structure creation approach, imparting the concept of lattice and motif through active and conscious user interaction. Additionally, a comprehensive set of didactic functionalities was also successfully implemented, as an online content publication platform for sharing interactive crystal structures, a \"didactic narratives\" tool that enables users to generate interactive classes based on predefined animated sequences as well the support for advanced interaction and virtual reality technologies as Oculus Rift, Google Cardboard, LEAP Motion, multi-touch devices and 3D printing technologies. Project deliverables were evaluated under action-research premises based on identified problems resolution and overall stake-holders acquired knowledge or empowerment . CW has successfully resolved most of the identified problems identified, empowering students, professors and researchers through positive impact in the democratization of knowledge and technological autonomy and independence.
76

Deformation mechanisms and strain localization in the mafic continental lower crust

Degli Alessandrini, Giulia January 2018 (has links)
The rheology and strength of the lower crust play a key role in lithosphere dynamics, influencing the orogenic cycle and how plate tectonics work. Despite their geological importance, the processes that cause weakening of the lower crust and strain localization are still poorly understood. Through microstructural analysis of naturally deformed samples, this PhD aims to investigate how weakening and strain localization occurs in the mafic continental lower crust. Mafic granulites are analysed from two unrelated continental lower crustal shear zones which share comparable mineralogical assemblages and high-grade deformation conditions (T > 700 °C and P > 6 Kbar): the Seiland Igneous Province in northern Norway (case-study 1) and the Finero mafic complex in the Italian Southern Alps (case-study 2). Case-study 1 investigates a metagabbroic dyke embedded in a lower crustal metasedimentary shear zone undergoing partial melting. Shearing of the dyke was accompanied by infiltration of felsic melt from the adjacent partially molten metapelites. Findings of case-study 1 show that weakening of dry and strong mafic rocks can result from melt infiltration from nearby partially molten metasediments. The infiltrated melt triggers melt-rock reactions and nucleation of a fine-grained (< 10 µm average grain size) polyphase matrix. This fine-grained mixture deforms by diffusion creep, causing significant rheological weakening. Case-study 2 investigates a lower crustal shear zone in a compositionally-layered mafic complex made of amphibole-rich and amphibole-poor metagabbros. Findings of case-study 2 show that during prograde metamorphism (T > 800 °C), the presence of amphibole undergoing dehydration melting reactions is key to weakening and strain localization. Dehydration of amphibole generates fine-grained symplectic intergrowths of pyroxene + plagioclase. These reaction products form an interconnected network of fine-grained (< 20 µm average grain size) polyphase material that deforms by diffusion creep, causing strain partitioning and localization in amphibole-rich layers. Those layers without amphibole fail to produce an interconnected network of fine grained material. In this layers, plagioclase deforms by dislocation creep, and pyroxene by microfracturing and neocrystallization. Overall, this PhD research highlights that weakening and strain localization in the mafic lower crust is governed by high-T mineral and chemical reactions that drastically reduce grain size and trigger diffusion creep.
77

Study of magnetic fluctuations and ordering in uranium compounds by heat capacity and neutron scattering measurements

Entwisle, Oliver John January 2018 (has links)
URhGe is the first ferromagnet discovered that shows superconductivity at ambient pressure. It shows a rich temperature-magnetic field phase diagram with a re-emergence of superconductivity at high magnetic field where the moments rotate. This suggests that the quantum fluctuations associated with the moment rotation may provide the pairing interaction for superconductivity. The objective of this thesis was to study these critical fluctuations with inelastic neutron scattering and heat capacity measurements, using the latter to test the bulk nature of the superconductivity and determine the types of gap nodes to help test this hypothesis. To perform the heat capacity measurements, it was necessary to develop an apparatus that measures milligram samples in the temperature range 50-1000 mK, and magnetic field range 0-12 T. The field exerts a mechanical force upon the sample, which causes it to rotate, perturbing the system destructively. The apparatus developed in this thesis overcomes this diffculty by holding the sample with tensioned kevlar wires. Testing was done by making measurements on UPt3, a well characterised superconductor. It was then used to measure URhGe in zero magnetic field. The extension to measurements in high magnetic field were not performed however, due to the structural integrity of the apparatus being weak - this was in an attempt to reduce the thermodynamic signature of the background. After many iterations of apparatus design and build, the device was proved not appropriate for high fields. A discussion of the zero-field data, as well as the design and build process, is given. The Curie temperature of URhGe is suppressed with magnetic field (applied along the b-axis), reaching zero temperature at the moment rotation transition referred to above. Small angle neutron scattering (SANS) was measured at both zero and finite fields to detect the evolution and relaxation of the critical fluctuations. The scattering is inelastic and the SANS measurement integrates over energy. Nevertheless it was possible to compare models with different dynamical dependences for the magnetic relaxation. In field, however, the magnitude of the fluctuations was strongly reduced, falling below the detection limit at half the critical field. Comparing Landau damping to various forms of non-Landau damping, a result was found that agrees with that for the ferromagnetic superconductors UGe2 and UCoGe, but the lack of critical scattering at field is found to be in contradiction with NMR measurements, which is discussed. UAu2 is a new material on the heavy fermion landscape. The crystal structure found suggests some frustrated magnetism, culminating in a Neél temperature of 43 K and a further transition at 400 mK; this suggests some new quantum criticality not seen before, and so heat capacity measurements were performed with the already-tested apparatus to see if, as the resistivity measurements suggest, a Fermi-liquid state is found. Results revealed differences between annealed and non-annealed samples in their thermodynamic signature, and the behaviour expected for antiferromagnetic spin-fluctuations is found to continue to temperatures below 150 mK, suggesting the existence of a quantum critical point. The validity of these results along with implications are discussed.
78

Metal complexes bearing pendant alkynes and metal complexes of N-heterocyclic carbenes

Brayshaw, Simon Keith January 2004 (has links)
This thesis is comprised of two parts. The first part describes the synthesis of cyclopentadienyltungsten complexes containing a pendant alkyne group (I), and the subsequent photo-induced intramolecular coordination of the alkyne, forming complexes such as II. Compounds containing intramolecularly coordinated alkynes are rare, and this is the first example using cyclopentadiene as the core ligand. The second part describes the synthesis and structural characterisation of a number of novel metal complexes containing N-heterocyclic carbene ligands, some containing particular functionality for taylored applications. New methods were used to form complexes of rhodium, iridium, silver and gold (eg. III, IV). Structural and spectroscopic properties of the complexes were correlated with electronic characteristics of the ancillary ligands. A number of rhodium and iridium complexes (eg. IV) derived from imidazolium-linked cyclophanes were synthesised and structurally characterised. Complexes of N-heterocyclic carbenes with pendant ionic groups were synthesised, and a preliminary examination of their catalytic activity in water was performed. N-Heterocyclic carbenes complexes containing an electron withdrawing nitro group were synthesised and the effect of the nitro group on metal-ligand bonding was examined.
79

Influência da laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 / Assymetric rolling influence on the AA1050 Aluminum mechanical properties

Zanchetta, Bianca Delazari 27 April 2017 (has links)
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:34:16Z No. of bitstreams: 1 ZANCHETTA_Bianca_2017.pdf: 6817373 bytes, checksum: 19faa9d0aa5279e71d08211f9d262c35 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:34:26Z (GMT) No. of bitstreams: 1 ZANCHETTA_Bianca_2017.pdf: 6817373 bytes, checksum: 19faa9d0aa5279e71d08211f9d262c35 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:34:35Z (GMT) No. of bitstreams: 1 ZANCHETTA_Bianca_2017.pdf: 6817373 bytes, checksum: 19faa9d0aa5279e71d08211f9d262c35 (MD5) / Made available in DSpace on 2017-08-16T14:34:44Z (GMT). No. of bitstreams: 1 ZANCHETTA_Bianca_2017.pdf: 6817373 bytes, checksum: 19faa9d0aa5279e71d08211f9d262c35 (MD5) Previous issue date: 2017-04-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Aluminum sheets are produced by rolling followed by annealing. However when submitted to deep drawing earing appears, caused by the plastic anisotropy resulting from the production process. After annealing the main texture is cube {001} , that is recognized as being the cause of this heterogeneity during deep drawing. The literature shows that when shear stress is applied in the deformation process, it leads to texture changes. In this study asymmetric rolling (AR) was used as a technique to produce shear. The shear stress is introduced by the different velocities between the upper and bottom rolls and in this study this was achieved by using roll radius relations (r1/r2) of 1,5 and 2. Rolling reductions of 50% in thickness were applied to aluminum AA1050 sheets. The conventional rolling (CR) was compared to the asymmetric rolling (AR), at two different reduction rates: 5% and 10%. The crystallographic textures were obtained by xray diffraction. Finite element analysis, using the DEFORM software, was used to analyze the effective strain distribution throughout the thickness as well as its components: normal strain, shear strain and rigid body rotation. The samples were annealed in a furnace with 350°C for 05, 10, 15, 20 and 60 minutes. The microstructure was characterized by optical microscopy, electron back scatter diffraction and x-ray diffraction. The plastic anisotropy (Lankford Parameter) was measured by tensile experiments at three different sheet directions and by the Erichsen test. The deformed samples’ microstructure was analyzed at the surface near to the upper roll and at half of the thickness. For the CR the main components were brass (Bs) {011} , Goss (Gs) {011} and copper (Cu) {112} , with 8.8 intensity at the central layer, and 4.5 at the surface. For AR samples the was more random at the surface of the samples with 5% of reduction per pass, added to a component of rotation in the normal direction, what resulted in cube and rotated cube textures or near to these orientations, generating a type of fiber {100}//ND. The maximum intensities for the (r1/r2) of 1,5 and 2 were 3 and 4, respectively. For the samples with 10% of reduction per pass the rolled texture was still presented, with a more intense rotation in the transversal direction related to the rolling direction and shear texture components {100}//ND and . The maximum intensities were 3 and 3.5 , for the (r1/r2) of 1,5 and 2, respectively. In the center layer of the samples with 5% of reduction per pass for (r1/r2) of 1,5 and 2 showed a intensity of 5.26 and 6.56, respectively and the strongest shear texture was rotated Goss (C). (011)[0-1- 1] The samples with 10% reduction per pass showed the greatest reduction of intensity with 3.05 and 3.63, for the (r1/r2) of 1,5 and 2 respectively, and the highest intensity was related to rotate the Goss (011)[0-1-1] component. In the pole figures rotations around the transversal direction (TD) and the normal direction (ND) were observed. Using the finite element analysis the rotation around the TD and ND were quantified and its variation across the thickness were analyzed. The rigid body rotation is superposed to shear , which leads to the observed texture gradients. The rotation around TD is imposed by the velocity difference between top and bottom roll, whereas the ND rotation is imposed by the experimental configuration, which permit variation of the sample alignment at the roll mill entrance. This was stronger for the 5% reduction rate and more concentrated at the samples surface. After 05 minutes the annealed samples were already recrystallized , after 60 minutes the grain average size was 30µm, and hardness 21HV. The annealed texture for the CR sample showed the greatest concentration off Cube texture {001} and intensity of 8.08 times the random. For the AR samples with 5% reduction per pass the intensities for the (r1/r2) of 1,5 and 2 was 5.88 and 6.56, respectively, and for the 10% reduction per pass 2.96 and 2.85, respectively. The AR decreases the annealed texture. In the samples of 5% reduction per pass the most intense shear texture was rotated Goss, the 10% reduction per pass did not have a predominant component. The Lankford parameters showed less anisotropy for the annealed samples with 10% reduction per pass. Based on the values of anisotropy and hardening exponent for each sample, the Limiting Rate of Drawing was calculated. The AR got a superior values than the CR ones, indicating an improvement of the drawability. / Chapas de Alumínio são comumente produzidas por laminação seguida de recozimento. Entretanto, ao serem submetidas à estampagem profunda apresentam problemas de orelhamento, devido à anisotropia plástica. Durante o recozimento a textura predominante é a cubo {001} , esta textura é reconhecida como sendo a causadora da má estampabilidade. A literatura indica que é possível alterar a textura final aplicando cisalhamento durante o processamento do material, neste trabalho aplicamos a Laminação Assimétrica (LA) como forma de produzir cisalhamento sobre a chapa. Utilizando o alumínio AA1050 até atingir um total de 50% de redução em espessura, com relações de assimetria (LA) de (r1/r2) de 1,5 e 2 com 5% e 10% de redução por passe e Laminação Convencional (LC) com taxa de 10% de redução por passe. A deformação experimental foi comparada à simulação de elementos finitos utilizando o software DEFORM, e a distribuição de deformação equivalente foi analisada ao longo da espessura da chapa. As amostras passaram por recozimento em forno tipo MUFLA, a 350°C por 05, 10, 15, 20 e 60 minutos. As amostras deformadas foram caracterizadas por microscopia óptica e sua textura cristalográfica foi obtida por difração de raios-x. As amostras recozidas passaram por caracterização microestrutural por microscopia óptica, difração de elétrons retroespalhados (EBSD) e difração de raios-x. A caracterização mecânica foi feita por ensaios de dureza, de tração e pelo ensaio de embutimento Erichsen. A microestrutura das amostras deformadas foi analisada próxima a superfície do rolo superior e no plano central a espessura. Para a LC foram encontradas concentrações maiores de Bs {011} , Gs {011} , Cu {112} , com intensidade máxima de 8,8 para o centro da chapa e de 4,5 na superfície. Para as amostras LA houve uma maior aleatoriedade das texturas tanto na superfície quanto no plano central. As amostras com 5% de redução por passe apresentaram as melhores reduções de intensidades máximas, somada a uma componente de rotação na direção normal (DN) da chapa, as intensidades máximas para (r1/r2) 1,5 e 2 foram de 3 e 4 respectivamente. Nas amostras de 10% de redução por passe ainda estavam presentes as componentes de laminação com uma rotação mais acentuada ao redor da direção transversal (DT) a direção de laminação as intensidades máximas foram de 3 e 3,5 para (r1/r2) 1,5 e 2 respectivamente. No centro da chapa as amostras de 5% de redução por passe para (r1/r2) 1,5 e 2 apresentam intensidades de 5,26 e 6,56 respectivamente e a textura de cisalhamento mais forte foi a Goss rodado (011) [0 1 1 ] (C). Já as amostras de 10% de redução apresentam as maiores reduções de intensidade com 3,05 e 3,63, para (r1/r2) 1,5 e 2 respectivamente, e uma proporção maior de intensidade Goss rodado (C). A simulação numérica foi utilizada para quantificar as rotações de corpo rígido impostas pela deformação, indicadas nas figuras de pólo pelas rotações ao redor da DN e da DT. Quanto às rotações ao redor da DT, para as reduções de 5% o cisalhamento se concentra na superfície e a rotação de corpo rígido é relativamente mais intensa no centro da amostra; nas reduções de 10% uma contribuição mais intensa tanto da rotação quanto do cisalhamento foi obtida. Quanto à rotação ao redor de DN ela foi mais intensa na superfície da chapa e para a redução de 5%. Após 05 minutos de tratamento as amostras já se encontravam recozidas atingindo um tamanho de grão médio de cerca de 30µm, e dureza em torno de 21HV. A textura de recozimento da amostra LC apresentou maiores concentrações das texturas cubo {001} e intensidade de 8,08. Para a LA com 5% de redução por passe as intensidades são máximas para r1/r2 1,5 e 2 foram 5,88 e 6,56, respectivamente, já para as com 10% de redução por passe, 2,96 e 2,85, respectivamente, apresentando a maior redução de concentração de texturas, assim como no material deformado. A LA promoveu, portanto a redução da intensidade de textura de recozimento Nas amostras de 5% de redução por passe a textura de cisalhamento mais intensa foi a Goss rodado, já para as amostras de 10% não houve uma componente predominante. O ensaio de tração nas três direções apresentou uma menor anisotropia para as amostras recozidas com 10% de redução por passe. Baseado nos valores de anisotropia e encruamento para cada amostra foi calculado a taxa de limite de embutimento, na qual as amostras LA obtiveram um valor superior a LC, indicando possuírem um melhor comportamento ao ensaio.
80

Modifikace hydroxidu nikelnatého pro zlepšení jeho elektrochemických vlastností v alkalických akumulátorech / Intensification of Nickel Hydroxide Properties in Order to Improvement of Its Electrochemical Behavior in Alkaline Accumulators

Máca, Tomáš January 2015 (has links)
Commercial alkaline accumulators with positive electrode based on nickel hydroxide generally comprise beta modification of the active material at present due to its excellent stabilization of performance during electrochemical cycling. This dissertation refers to a research work accomplished by author, which has been aimed to utilization of alpha nickel hydroxide in alkaline batteries including exploration of possibilities to attain its stability in strong alkali medium of the electrolyte. I have focused my effort to elucidate reasons for its transformation tendency and to find way of their suppression.

Page generated in 1.0055 seconds