• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 105
  • 78
  • 44
  • 41
  • 32
  • 16
  • 12
  • 11
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 684
  • 101
  • 91
  • 90
  • 89
  • 78
  • 70
  • 70
  • 64
  • 51
  • 51
  • 48
  • 44
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Pyrometallurgical studies on copper, zinc and lead

Wearmouth, Alan January 1989 (has links)
No description available.
22

Preparação e caracterização de cerâmicas supercondutoras nos sistemas Y-Ba-Cu-O e Tm-Ba-Cu-O / Preparation and characterization of superconducting ceramics in the system Y-Ba-Cu-O and Tm-Ba-Cu-O

Airton Abrahao Martin 25 August 1988 (has links)
Neste trabalho estudamos a influencia da temperatura e tempo de reação e sinterização na preparação de amostras cerâmicas supercondutoras pelo método de reação no estado sólido. Os resultados indicam claramente que algumas propriedades destes supercondutores, tais como: temperatura crítica (Tc), susceptibilidade magnética (X), resistividade (&#961), microestruturas, densidade e porosidade aparente, sofrem forte influencia das condições de tratamento térmico. Foram preparadas várias amostras dos sistemas YBa2Cu3O6.5+x e TmBa2Cu3O6.5+x, sendo que a temperatura e tempo ideal de reação encontrados foram de 950&#176C por 6 horas e 925&#176C por 48 horas, respectivamente; ambas tratadas em fluxo de oxigênio. A caracterização destas amostras foram feitas pelas técnicas de difração de raios-x, técnica de quatro-pontas (medida da variação da resistividade pela temperatura), ponte de Hartshorn (para a medida da variação da susceptibilidade magnética pela temperatura), microscopia eletrônica de varredura (para análise das microestruturas) e método de imersão (para a medida da densidade e porosidade aparente). A maior temperatura crítica encontrada foi de aproximadamente 94K para YBa2Cu3O6.5+x e de aproximadamente 91K para o TmBa2Cu3O6.5+x / The influence of the temperature and time in the reaction and sinterization of superconducting ceramics prepared by a solid state reaction was determined. The results clearly showed that some of its properties, such as critical temperature (Tc), magnetic susceptibility (X), resistivity (&#961), microstructure, apparent density, and porosity undergo a strong influence of the preparation conditions. Some samples in the YBa2Cu3O6.5+x and TmBa2Cu3O6.5+x systems were prepared. The ideal reaction temperature and time were 950&#176C for 6 hours and 925&#176C for 48 hours, respectively. Both annealed in O2 flow. The sample characterization was made by using X-ray diffraction, standard four probe (measures the variation of resistivity versus temperature), Bridge of Hartshorn (the variation of susceptibility versus temperature), scanning electron micrograph (microstructure analysis), and immersion method (measures the apparent density and porosity). The greatest critical temperature was approximately 94K for YBa2Cu3O6.5+x and 91K for TmBa2Cu3O6.5+x
23

SÍNTESE E CARACTERIZAÇÃO DE NANOPARTÍCULAS DE CU-ZNO E SUA UTILIZAÇÃO NO REVESTIMENTO DE SUPERFÍCIES DE TITÂNIO POR DEPOSIÇÃO ELETROFORÉTICA.

GENIER, F. S. 05 July 2017 (has links)
Made available in DSpace on 2018-08-01T22:57:12Z (GMT). No. of bitstreams: 1 tese_10883_DISSERTAÇÃO FRANCIELLI GENIER 2017 PÓS DEFESA PDF.pdf: 2142232 bytes, checksum: 955dfa826de57674f0045dc8adc7d71b (MD5) Previous issue date: 2017-07-05 / Grande parte dos insucessos das cirurgias de transplante metálico ocorre devido à rejeição corporal à superfície do material empregado e às infecções pós-operatórias na região implantada. Dessa forma, prevenir o crescimento bacteriano sobre esses materiais e simultaneamente contribuir para a sua adaptação ao organismo são as principais metas de pesquisas recentes em nanomedicina. Como uma forma de alcançar esses objetivos, o revestimento de próteses metálicas com nanopartículas representa uma alternativa viável aos métodos tradicionais de tratamento, como por exemplo, o uso de antibióticos cuja eficácia decresce com o surgimento de cepas resistentes. Nesse trabalho, foi realizada a aplicação de nanopartículas de óxido de zinco dopado com cobre (Cu-ZnO) para o revestimento de superfícies de titânio metal comumente utilizado em implantes artificiais, a partir da técnica de deposição eletroforética. A escolha das nanopartículas de Cu-ZnO foi pautada em suas características antibacterianas, como demonstrado na literatura. Utilizando as técnicas de caracterização por microscopia (MEV e MET), espectroscopia (EDS) e difração de raios-X (DRX), pôde-se confirmar seu formato e os elementos presentes nas nanopartículas bem como o tamanho médio do cristalito (228,24 nm) e os parâmetros de rede. As nanopartículas foram suspensas e depositadas por eletroforese em placas de titânio por 1 minuto sob tensões entre 100 e 180 V a fim de se obter a melhor condição de deposição, sendo esta a de 160 V. O pH e a condutividade elétrica da suspensão também foram avaliados antes e após a EPD. Os resultados de EDS confirmaram a presença do nanomaterial no depósito e as imagens obtidas por MEV confirmaram o aumento da rugosidade superficial após a deposição eletroforética. Assim sendo, almejou-se nesse trabalho explorar o potencial de dessa técnica para o revestimento em implantes artificiais e, por conseguinte, contribuir para a pesquisa em nanotecnologia e suas aplicações em medicina.
24

Deposition and characterization of CIGS layers by multiple deposition techniques / Préparation et caractérisation de couches minces de CIGS déposées par différentes techniques

Reyes Figueroa, Pablo 21 October 2016 (has links)
Technologies les plus prometteuses pour suivre le défi de la production d'énergie. La première partie de cette mémoire aborde les absorbeurs de CISe préparés par co-évaporation (3 étapes) et l'effet de l'oxygène (ainsi que le sodium) dans les absorbeurs et des cellules solaires. La température du substrat de 1ère étape la plus élevé (400°C), conduit à un rendement maximal de 12% (Voc=460mV, Jsc=37mA/cm2, FF=78,3%). L’oxydation des couches précurseurs de In2Se3 a montré que les oxydations prolongées ont donnée lieu à faibles rendements de cellules solaires. Les cellules de CISe sans Na ont été fortement dégradées après l’oxydation, avec une baisse de Voc (-72%) et de FF (- 45%). La deuxième partie de la mémoire traite avec la croissance des couches de CISe par un procédé hybride (pulvérisation pyrolyse suivie par coévaporation). La croissance est basée sur un processus de co-évaporation en 3 étapes, mais en remplaçant la couche de 1ère étape avec un couche In2Se3 pyrolysée. Il a été montré qu’une couche de CISe de haute qualité peut être obtenue. L’optimisation des conditions de croissance du procédé hybride (régime du Cu) a permis des dispositifs avec un rendement de 11,1%. Une amélioration peut être atteinte par la diminution de la recombinaison au niveau du contact arrière. / In photovoltaics, the thin film Cu(In,Ga)Se2 (CIGSe) technology is one of the most promising technology to keep up with today’s energy production challenge. The first part of this work address the CISe absorbers films prepared by the 3-stage co-evaporation process. Also, the effect of the oxygen (along with sodium) in the CISe absorbers and solar cells is investigated. The highest 1st-stage substrate temperature (400 C) leads to the highest efficiency of 12% (Voc=460mV, Jsc=37 mA/cm2, FF=78.3%). Oxidation of the In2Se3 precursors films showed that long time exposures resulted in low solar cell parameters. The CISe cells without sodium are degraded after oxidation, with a drop in Voc (-72%) and FF (-45%). The second part of the work deals with the growth of CISe films by a hybrid process which involves two deposition techniques, namely spray pyrolysis and co-evaporation. The process is based on a 3-stage coevaporation process but replacing the 1st-stage film with an In2Se3 spray pyrolyzed film. It was shown that highquality CISe films can be obtained. Optimization of the hybrid process growth conditions (Cu regime) allowed solar cells with efficiencies of 11.1% (Voc=438mV, Jsc=37 mA/cm2, FF=67.5%). Further improvement could be achieved by the decrease of recombination at the back contact.
25

Analyse du couplage des fonctions de filtration des suies et de réduction des NOx pour moteur diesel / Analysis of coupling the selective NOx reduction and Diesel soot oxydation functions

Molina Gonzalez, Sonia 18 December 2017 (has links)
Les systèmes de post-traitement qui combinent diverses fonctionnalités dans un même dispositif catalytique sont considérées comme une solution efficace pour réussir l’objectif définie par les restrictives futures normes qui régulent les émissions de l'industrie automobile. Ils permettent non seulement de réduire les coûts intrinsèques dus à l’encombrement mais aussi, dans certains cas, de favoriser les réactions catalytiques par des effets thermiques ou synergiques. Ce concept est particulièrement étudié pour les moteurs Diesel dont la ligne d'échappement peut comprendre jusqu'à quatre éléments. La réduction des NOx peut être réalisée par réduction catalytique sélective de l'ammoniac sur filtre (NH3-SCRF) en utilisant des catalyseurs à base de zéolite échangée par Cu ou Fe. Ce filtre à suie catalysé assume simultanément deux fonctions: l'élimination des particules et la réduction des espèces de NOx vers N2 et de l’eau. En ce qui concerne les catalyseurs SCR, la couche active est classiquement déposée sur les parois d'un substrat de grande porosité dont les canaux sont bloqués à des extrémités alternatives. Une porosité accrue du substrat du filtre (tel que la cordiérite ou SiC) est nécessaire pour permettre le dépôt de la quantité de phase de catalyseur nécessaire pour le traitement des émissions gazeuses en assurant une filtration efficace et sans produire un effet de contre-pression du system. En plus, il est nécessaire de remarquer que des nouvelles réactions se produiront dans ce système puisque la suie Diesel, le NOx et l'agent réducteur sont présents dans la même unité pour la première fois. Selon la littérature actuellement disponible, les polluants et la suie peuvent interagir de trois manières principales: 1) la suie bloque l'accessibilité du flux gazeux aux sites actifs «classiques» du catalyseur; 2) possibilité de réduction des NOx sur les particules de suie; et enfin, 3) la présence de suie affecte les performances des réactions SCR ou, au contraire, les réactions SCR affectent le processus d'oxydation des particules jusqu'à ce que la compétition pour le NO2 soit produite / Aftertreatment systems that combine various functionalities into the same catalytic device are considered to be an efficient solution to reach the target defined by the restrictive future emission standards that regulate the automotive industry emissions. They are able not only to reduce the intrinsic costs due to the packaging but also, in some cases, to promote catalytic reactions by thermal or synergistic effects. This concept is being particularly explored for Diesel engines whose exhaust line may comprise up to four separate elements. NOx abatement can be accomplished by ammonia selective catalytic reduction on filter (NH3-SCRF) using Cu or Fe-exchanged zeolite-based as catalysts. This catalysed soot filter assumes two functions, simultaneously: removal of particles and reduction of NOx species towards N2. Regarding the SCR catalysts, the active layer is conventionally deposited onto the walls of a high porosity substrate whose channels are blocked at alternative ends. An increased porosity of the filter (such as cordierite or SiC) substrate is required to allow the deposition of the amount of catalyst phase needed for the treatment of gaseous emissions while efficient filtration and without producing a backpressure effect. Furthermore, it is necessary to remark that new reactions will occur in this system as Diesel soot, NOx and the reductant agent are present in the same unit for the first time. Accordingly to the literature currently available, there are three main ways that NOx pollutants and soot may interact: 1) soot blocking the accessibility of gas flow to “classic” active sites of the catalyst; 2) possibility of NOx reduction takes place over the soot particles; and finally, 3) soot presence affects SCR reactions performance or, contrarily, SCR reactions affects PM oxidation process as far as competition for NO2 will be produced
26

FixI and FixI2: Homologous proteins with unique functions in Sinorhizobium meliloti

Collins, Jessica M. 19 March 2014 (has links)
Cu+-ATPases are transmembrane enzymes that couple the efflux of cytoplasmic Cu+ to the hydrolysis of ATP. It is well established that Cu+-ATPases control cytoplasmic Cu+ levels. However, bacterial genomes, particularly those of symbiotic/pathogenic organisms, contain multiple copies of genes encoding Cu+-ATPases, challenging the idea of a singular role for these enzymes. Our lab has demonstrated that one of the two Cu+-ATPases in Pseudomonas aeruginosa, a FixI-type ATPase, has an alternative role, most likely Cu+ loading of cytochrome c oxidase (Cox). To further study alternative roles of Cu+-ATPases, we study the symbiont Sinorhizobium meliloti. Rhizobia are soil-dwelling bacteria that interact with legumes, forming plant root nodules that actively fix N2. The S. meliloti genome contains five Cu+-ATPases, two of which are FixI-type. Both of these enzymes, termed FixI1 and FixI2, are downstream of Cox operons. We hypothesized that the presence of multiple FixI-type ATPases was not an example of redundancy, but rather is an evolutionary adaptation that allows rhizobia to survive under the wide variety of adverse conditions faced during early infection and establishment of symbiosis. Towards this goal, this work focused on examining the effects of mutation of each ATPase on both free-living bacteria and on the ability of rhizobia to establish an effective symbiosis with its host legume. Each of these mutants presents a different phenotype at varying points of the nodulation process, and only the fixI2 mutation produces a respiratory-deficient phenotype during aerobic growth. These results are consistent with our hypothesis that the two proteins have non-redundant physiological functions. Understanding the factors that contribute to an effective symbiosis is beneficial, since N2 fixation in legumes is important to both agriculture and industry.
27

A Multi-scale Model for Copper Dishing in Chemical-Mechanical Polishing

Noh, Kyungyoon, Saka, Nannaji, Chun, Jung-Hoon 01 1900 (has links)
The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested. / Singapore-MIT Alliance (SMA)
28

Evaporative drying of cupric-chloride droplets in a thermo-chemical cycle of hydrogen production

Slowikowski, Mateusz 01 August 2012 (has links)
In this thesis, new empirical correlations that predict the behaviour of Cupric-Chloride droplets undergoing spraying and drying processes are developed. Cupric-Chloride is a chemical compound with the formula CuCl2 that is present as slurry or aqueous solution within the Copper-Chlorine (Cu-Cl) thermo-chemical cycle for generation of hydrogen. An experimental study examines the effects of inlet air and liquid temperatures, pressure, concentration, nozzle diameter, and liquid flow rate on the outlet air temperature, particle size, particle size distribution, morphology, moisture content, bulk density, and flowability. The analysis examines a single droplet of CuCl2 solution in a continuum drying media. The validation of the model involves comparisons with experimental data from previous studies of different fluids based on non-dimensional analysis. The study provides new information about the effects of different concentrations of water in the CuCl2 slurry drying at low to moderate air temperatures.Analytical correlations of heat and mass transfer are developed for the aqueous solution, subject to various drying conditions. The analysis is performed for moist air in contact with a sprayed aqueous solution of Copper (II) Chloride Dihydrate [CuCl2 ·(2H2O)]. Validation of the model is performed by comparisons with experimental results. / UOIT
29

Structural controls of Ni-Cu-PGE ores and mobilization of metals at the Garson Mine, Sudbury

Mukwakwami, Joshua 31 July 2013 (has links)
The Garson Ni-Cu-PGE deposit is located on the South Range of the 1850 Ma Sudbury structure along the contact between the Sudbury Igneous Complex (SIC) and the underlying metasedimentary and metavolcanic rocks of the Paleoproterozoic Huronian Supergroup. It comprises four ore bodies that are hosted by E-W-trending shear zones that dip steeply to the south. The shear zones formed as south-directed D1 thrusts in response to flexural-slip during regional buckling of the SIC. They imbricated the ore zones, the SIC norite, the underlying Huronian rocks and they emplaced slivers of Huronian rocks and anatectic breccia into the overlying Main Mass norite. Coexisting garnet-amphibole pairs yielded syn-D1 amphibolite facies metamorphic temperatures ranging from ~550°C to 590°C. The shear zones were coeval with the moderately southdipping South Range and Thayer Lindsley shear zones, which formed to accommodate the strain in the hinge zone as the SIC tightened with progressive D1 shortening. The SE limb of the SIC was overturned together with the D1 thrusts, which were then reactivated as steeply south-dipping reverse shear zones during syn-D2 greenschist metamorphism. Syn-D2 metamorphic titanite yield a U-Pb age of ca. 1849 ± 6 Ma, suggesting that D1 and D2 are part of a single progressive deformation event that occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to the colinear L1 and L2 stretching mineral lineations. Ore types consist mainly of pyrrhotite-pentlandite-chalcopyrite breccia ores, but also include pyrrhotite-pentlandite-chalcopyrite disseminated sulfide mineralization in norite, and syn-D2 quartz-calcite-chalcopyrite-pyrrhotite-pentlandite iv veins. In the breccia ores, matrix sulfides surround silicate rock fragments that have a strong shape-preferred orientation defining a pervasive foliation. The fragments are highly stretched parallel to the mineral lineations in wall rocks, suggesting that the ore bodies are zones of high strain. Pyrrhotite and chalcopyrite occur in piercement structures, in boudin necks between fragments, in fractures in wall rocks and in fold hinges, suggesting that the sulfides were mobilized by ductile plastic flow. Despite evidence of high strain in the ore zones, the sulfide matrix in D1 and D2 breccia ores show little evidence of strain as they consist predominantly of polygonal pyrrhotite aggregates, suggesting that they recrystallized during, or immediately after D1 and D2. However, rare elongate pyrrhotite grains aligned parallel to S2 are locally preserved only in D2 breccia ores. Exsolution of pentlandite loops along grain boundaries of elongate pyrrhotite formed S2-parallel pentlandite-rich layers in D2 breccia ores, whereas the pentlandite loops are multi-oriented in D1 contact breccia as they were exsolved along grain boundaries polygonal pyrrhotite. Because exsolution of pentlandite post-date D1 and D2, and that individual pentlandite grains neither have a shape-preferred orientation nor show evidence for cataclastic flow, the sulfides reverted to, and were mobilized as a homogeneous metamorphic monosulfide solid solution (mss) during D1 and possibly D2. This is in agreement with predictions from phase equilibria as the average Garson composition plots within the mss field in Fe-Ni-S ternary diagram at temperatures above ~400°C. Disseminated and breccia ores at Garson have similar mantle-normalized multi-element chalcophile patterns as undeformed contact-type disseminated and massive ore, v respectively, at the well known Creighton mine in the South Range. This suggests that the Garson ores are magmatic in origin and that their compositions were not significantly altered by hydrothermal fluids and deformation. The lack of variations in Ni tenors between the disseminated and breccias ores suggest that the R-factor was not the process controlling metal tenors because the disseminated sulfides do not consistently have higher metal tenors than the breccia ore. The breccia ores are enriched in Rh-Ru-Ir and are depleted in Cu-Pd-Pt-Au, in contrast to footwall-type ore at the nearby Garson Ramp mine which is enriched in the same metals. When Ni100, Rh100, Ir100, Pt100 and Pd100 are plotted against Cu100, the breccia and footwall-type ore analyses plot along model mss fractionation and sulfide melt model curves, suggesting that these two ore types are related by mss fractionation. In summary, the Garson breccia ores are mss cumulates that settled quickly at the base of the SIC via a gravity filtration process, and were mobilized as a metamorphic mss by ductile plastic flow during D1 and D2. Despite minor local hydrothermal mobilization of some metals, the study confirms findings from other studies that highly deformed Ni-Cu- PGE deposits, such as the Garson deposit, can provide important information on the genesis of the deposits.
30

Design, Synthesis, and Evaluation of Metal Cation Sensors with Donor-Acceptor Architecture

Cody, John W., Jr. 21 November 2006 (has links)
Copper is an essential trace element present in all living systems and is important for the function of many cellular enzymes. It ranks third in intracellular abundance behind only zinc and iron and plays a very important role as a catalytic cofactor in various cellular processes such as mitochondrial respiration, iron uptake, and the redox processes of a number of enzymes, including superoxide dismutase, lysyl oxidase, or tyrosinase. Any abnormality in copper trafficking pathways can lead to serious diseases such as Wilsons disease, Menkes syndrome and has been implicated in the neurodegenerative diseases amyotropic lateral sclerosis (ALS) and Alzheimers disease. While free copper in the cytoplasm would prove toxic, there is compelling evidence for the existence of a labile pool of copper that remains kinetically accessible. In order to investigate the existence of such a pool the development of Cu(I) selective probes is necessary. Chapter I provides the background for the role of copper in biology and elucidates the main trafficking pathways discovered to date. This chapter also provides recent developments of fluorescent sensors for selective visualization of biologically relevant metals. Chapter II discusses the exploration of a phenanthroline-based ligand for the selective detection of Cu(I). A series of derivatives incorporating chelating substituents in the 2- and 9-positions to enforce a 1:1 binding stoichiometry were synthesized and the properties of their respective Cu(I) complexes were characterized by x-ray structural analysis, and their photophysical properties were investigated by absorption and emission spectroscopy. Visible light excitation yielded metal-to-ligand charge-transfer (MLCT) excited states with luminescence lifetimes up to 155 ns. Electrochemical measurements further indicate that coordinative rearrangements are involved in nonradiative deactivation of the excited states. According to time-dependent density functional theory calculations (B3LYP/6-31G**), the major MLCT transitions are polarized along the C2 axis of the complex and originate predominantly from the dxz orbital. In chapter III, the development of a ratiometric Cu(I) sensor based on a donor-acceptor functionalized biphenyl fluorophore platform is discussed. The fluorescence emission energy for such fluorophores is highly dependent upon the interannular twist angle and this property was harnessed to provide a ratiometric sensor selective for Cu(I). Coordination of Cu(I) leads to a flattening of the biphenyl backbone and was confirmed by absorbance and emission spectroscopy as well as 2D NOESY experiments. The peak emission energy was shifted by 39 nm towards higher energy upon metal cation binding with a concomitant 7 bathochromic shift in absorption energy. The photophysical data accompanied by 1H NMR analysis confirms a well-defined 1:1 binding stoichiometry between metal and ligand. The findings from this study showed ratiometric behavior for this probe, albeit with a lowered quantum yield. While the quantum yield for the fluorophore discussed in chapter III was low (8.0%), the focus of chapter IV was the elucidation of the fluorescence quenching mechanism. To investigate the possibility of a twisted intramolecular charge transfer (TICT) state a donor-acceptor biphenyl fluorophore was synthesized incorporating a conformationally restricted amine donor group incapable of rotating out of plane in the excited state. Analysis of this derivative, as well as the sensor discussed in chapter III, reveals that fluorescence quenching is most likely due to hydrogen bonding to the acceptor subunit in they excited state. Finally, in chapter V, a pyrazoline fluorophore library with varying numbers of fluorine substituents was synthesized. The photophysical and electrochemical properties of these fluorophores were measured in order to determine if careful tuning of the excited state electron transfer thermodynamics is possible. The compounds cover a broad range of excited state energies and reduction potentials, and the data suggest that selective and differential tuning of both the reduction potential of the acceptor as well as the excited state equilibrium energy. These findings show that the individual parameters involved in excited state electron transfer can be tuned by the modular architecture of the pyrazoline fluorophore.

Page generated in 0.0236 seconds