• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O problema de Cauchy para a equação da onda cúbica

Farias, Marcos Alves de 27 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:28:26Z (GMT). No. of bitstreams: 1 3788.pdf: 684718 bytes, checksum: 743ac325dfb93fd96a6cc9b15d66467d (MD5) Previous issue date: 2011-05-27 / Financiadora de Estudos e Projetos / In this work, we study the result of global well-Posedness for the cubic wave equation @2 t u&#56256;&#56320;_u+u3 = 0 in R_R3, where the Cauchy data is in the Sobolev space Hs(R3)_ Hs&#56256;&#56320;1(R3) with 13 18 < s < 1. The proof is based on the work of T. Roy, [23], in this paper Roy propose a almost conservation law for the energy and from this he get a inequality that together with the local well-posedness theory proved by Lindbald and Sogge in [18] guarantee the global well-posedness for the problem. / Neste trabalho estudamos um resultado de boa colocação global para a equação da onda cúbica &#948;(_t^2)u-&#8710;_u+U^3=0 em R_R3, no qual os dados de Cauchy estão no espaço de Sobolev Hs(R3) x Hs&#56256;&#56320;1(R3), para 13 18 < s < 1. A prova é baseada no rabalho de T. Roy, [23], nele é estabelecido uma lei de quase conservação de energia e a partir disso se obtém uma desigualdade que aliada a teoria da boa colocação local estabelecida por Lindbald e Sogge em [18] garante a boa colocação global para o problema.
2

Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica

Pinto, Aldo Vieira 08 July 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1 3166.pdf: 902639 bytes, checksum: ea05b6d6e2b4c76c819c3abd8b7bd595 (MD5) Previous issue date: 2010-07-08 / Financiadora de Estudos e Projetos / Neste trabalho, estudamos o resultado de boa-colocação para a equação da onda cúbica u +uR3 = 0 em R3, devido a H. Bahouri e J.-Y. Chemin, no qual os dados de Cauchy estão no espaço de Sobolev homogêneo H3/4 (R3) H-1/4 (R3). A prova utiliza um método de interpolação não-linear, decomposição de Bony e desigualdade logarítmica de Strichartz, todas formuladas na Teoria de Littlewood-Paley.

Page generated in 0.1079 seconds