• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • Tagged with
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cucurbitacin chemical residues, non-phytotoxic concentration and essential mineral elements of nemarioc-al and nemafric-bl phytonematicides on growth of tomato plants

Bango, Happy January 2019 (has links)
Thesis(M.Sc.( Agriculture, Horticulture)) -- University of Limpopo, 2019 / Worldwide, tomato (Solanum lycopersicum L.) is one of the most important crops grown for nutritional value and health benefits, and are highly susceptible to root-knot (Meloidogyne species) nematodes. Following the withdrawal of synthetic chemical nematicides, Nemarioc-AL and Nemafric-BL phytonematicides have been researched and developed as alternatives to synthetic chemical nematicides. However, Nemarioc-AL and Nemafric-BL phytonematicides contains allelochemicals namely, cucurbitacin A (C32H46O9) and cucurbitacin B (C32H46O8) as their active ingredients. Therefore, the objective of this study was to determine whether increasing concentration of Nemarioc AL and Nemafric-BL phytonematicides would result in cucurbitacin residues in tomato plant, to generate mean concentration stimulation point (MCSP) values, overall sensitivity (∑k) and selected foliar mineral elements of tomato plant. Two parallel trials of Nemarioc AL and Nemafric-BL phytonematicides were conducted under field conditions, with each validated the next season. Each trial had seven treatments, namely, 0, 2, 4, 8, 16, 32 and 64% of Nemarioc-AL or Nemafric-BL phytonematicide concentrations, arranged in a randomised complete block design (RCBD), with five replications. In each trial, the seasonal interaction on variables was not significant and therefore data were pooled across the two seasons (n = 70). In both phytonematicides, the cucurbitacin residues were not detected in soil and tomato fruit. Plant variables and selected foliar nutrient elements were subjected to the Curve-fitting Allelochemical Response Data (CARD) model to generate biological indices which allowed for the calculation of MCSP of phytonematicides on tomato and their ∑k values of tomato to Nemarioc-AL and Nemafric BL phytonematicides. In Nemarioc-AL phytonematicide experiment, MCSP for tomato plant variables was at 1.13%, with the ∑k of 60 units, while the MCSP for selected tomato nutrient elements in leaf tissues was at 2.49%, with the ∑k of 21 units. Plant height, chlorophyll content, stem diameter, number of fruit, dry fruit mass, dry shoot mass and dry root mass each with increasing concentration of Nemarioc-AL phytonematicide exhibited positive quadratic relations with a model explained by 95, 82, 96, 89, 83, 83 and 92%, respectively. Similarly, K, Na and Zn each with increasing Nemarioc-AL phytonematicide concentration exhibited positive quadratic relations with a model explaining a strong relationship by 91, 96 and 89%. In Nemafric-BL phytonematicide experiment, MSCP for tomato plant variables was at 1.75%, with the ∑k of 45 units, whereas MCSP for selected tomato nutrient elements in leaf tissues was at 3.72% with the ∑k of 33 units. Plant height, chlorophyll content, stem diameter, number of fruit, dry fruit mass, dry shoot mass and dry root mass and increasing Nemafric-BL phytonematicide concentration exhibited positive quadratic relations with the model explaining a strong relationship by 92, 83, 97, 96, 87, 94 and 96%. Likewise, Na and Zn each with increasing Nemafric-BL phytonematicide concentration exhibited positive quadratic relations with a model explaining their relationship by 93 and 83%, respectively. In contrast, K with increasing Nemafric-BL phytonematicide concentration exhibited negative quadratic relations with a model explaining the relationship by 96%. In conclusion, tomato plant variables and selected foliar nutrient elements over increasing concentration of phytonematicides exhibited DDG patterns, characterised by three phases, namely, stimulation, neutral and inhibition. The developed non-phytotoxic concentration would be suitable for successful tomato production under field conditions.
2

Farmacocinética populacional e ligação as proteínas plasmáticas da cucurbitacina E e seu metabólito cucurbitacina I em ratos / Population pharmacokinetics and plasma protein binding of cucurbitacin E and its metabolite cucurbitacin I in rats

Fiori, Giovana Maria Lanchoti 08 September 2016 (has links)
Atualmente a cucurbitacina E é considerada uma candidata a fármaco em razão de sua atividade anticâncer, reconhecimento de seus alvos moleculares e sinergismo com outros fármacos utilizados no tratamento do câncer. Porém, ainda não é possível seu uso na clínica devido a importantes lacunas na literatura relativas a ensaios de farmacocinética pré-clínicos e clínicos. A cucurbitacina E é hidrolisada a cucurbitacina I em plasma e em microssomas de fígado humano. O presente estudo visa avaliar a farmacocinética populacional e ligação as proteínas plasmáticas da cucurbitacina E e seu metabólito cucurbitacina I em plasma de ratos. O método de análise sequencial da cucurbitacina E e cucurbitacina I em plasma de ratos foi desenvolvido utilizando LCMS/ MS. Alíquotas de 50 ?L de plasma foram desproteinizadas com acetonitrila e os resíduos reconstituídos com acetonitrila:água (1:1, v/v) e adicionados do padrão interno clobazam. Os extratos foram injetados na coluna RP-18 com fase móvel constituída por mistura de acetonitrila:água:metanol (32:35:33, v/v/v). O método é preciso e exato com linearidade no intervalo de 1-100 ng de cucurbitacina E/mL de plasma e de 0,4-200 ng de cucurbitacina I/mL de plasma. O método foi aplicado na avaliação da farmacocinética da cucurbitacina E administrada a ratos machos Wistar em dose única oral (gavagem) e intravenosa de 1mg/kg dissolvida em DMSO e tampão fosfato salino pH 7,4 (5:95, v/v). As amostras seriadas de sangue foram coletadas até 24 h após a administração oral ou intravenosa. As concentrações plasmáticas de cucurbitacina E foram quantificadas até 16 h somente após a administração intravenosa, enquanto as concentrações plasmáticas de cucurbitacina I permaneceram abaixo dos valores de LIQ seguindo a administração oral ou intravenosa. O modelo de farmacocinética populacional foi desenvolvido para a cucurbitacina E administrada por via intravenosa com o auxílio do programa NONMEM com adequada qualidade de ajuste e desempenho preditivo. O perfil farmacocinético da cucurbitacina E administrada por via intravenosa foi descrito por modelo bicompartimental com distribuição e eliminação de primeira ordem com os seguintes parâmetros farmacocinéticos: tempo de liberação (D) de 0,45 h, volume de distribuição (Vd) de 27,22 L, clearance (Cl) de 4,13 L/h e meiavida de eliminação (t1/2) de 4,57 h. As interações da cucurbitacina E e cucurbitacina I com as albuminas séricas humana (HSA) e de rato (RSA) foram investigadas utilizando biossensor óptico baseado em ressonância de plasma de superfície (SPR) e espectroscopia de dicroísmo circular (CD). Os dados de ligação das cucurbitacinas a albuminas foram obtidos por experimentos de competição de CD com biliverdina. Os dados de SPR revelaram um evento de ligação inédito entre a cucurbitacina I e a HSA e as afinidades de ligação da cucurbitacina E e cucurbitacina I são maiores para a RSA do que para a HSA. A cucurbitacina E e a cucurbitacina I podem ser classificadas como substâncias de alta afinidade de ligação com a HSA e com a RSA. A análise de CD mostrou que a cucurbitacina E e a cucurbitacina I modificam a ligação da biliverdina as albuminas através de modulação alostérica oposta (positiva para HSA, negativa para RSA), confirmando a necessidade de cuidados na extrapolação de dados farmacocinéticos pré-clínicos para clínicos. / Cucurbitacin E is currently considered a drug candidate due to its anticancer activity, recognition of its molecular targets, and synergism with other drugs used for cancer treatment. However, the use of cucurbitacin E in clinical practice is not possible because of important research gaps regarding its preclinical and clinical pharmacokinetic characteristics. Cucurbitacin E is hydrolyzed to cucurbitacin I in plasma and in human liver microsomes. The aim of this study was to evaluate the population pharmacokinetics and plasma protein binding of cucurbitacin E and of its metabolite cucurbitacin I in rats. The method for the sequential analysis of cucurbitacins E and I in rat plasma was developed using LC-MS/MS. Plasma aliquots of 50 ?L were deproteinized with acetonitrile, the residues were reconstituted in acetonitrile:water (1:1, v/v), and clobazam was added as internal standard. The extracts were injected into an RP-18 column using a mobile phase consisting of a mixture of acetonitrile:water:methanol (32:35:33, v/v/v). The method was precise and accurate, showing linearities at a range of 1-100 ng cucurbitacin E/mL plasma and of 0.4-200 ng cucurbitacin I/mL plasma. The method was applied to the pharmacokinetic evaluation of cucurbitacin E administered to male Wistar rats at a single oral (gavage) or intravenous dose of 1 mg/kg dissolved in DMSO and phosphate-buffered saline, pH 7.4 (5:95, v/v). Serial blood samples were collected up to 24 h after oral or intravenous administration. The plasma concentrations of cucurbitacin E were quantified up to 16 h only after intravenous administration, while the plasma concentrations of cucurbitacin I remained below the limit of quantification after oral or intravenous administration. The population pharmacokinetic model was developed for administered intravenously cucurbitacin E using the NONMEM program, with adequate goodness of fit and predictive performance. The pharmacokinetic profile of intravenously administered cucurbitacin E was described by a two-compartment model with first-order distribution and elimination. The following pharmacokinetic parameters were obtained: release time (D) of 0.45 h, volume of distribution (Vd) of 27.22 L, clearance (Cl) of 4.13 L/h, and elimination half-life (t1/2) of 4.57 h. The interactions of cucurbitacin E and I with human (HSA) and rat (RSA) serum albumins were investigated using an optical biosensor by surface plasmon resonance (SPR) and circular dichroism (CD) spectroscopy. The binding data of the cucurbitacins to albumins were obtained by CD competition experiments with biliverdin. The SPR data revealed an undescribed binding event between cucurbitacin I and HSA and the binding affinities of cucurbitacin E and cucurbitacin I were higher for RSA than for HSA. Cucurbitacin E and cucurbitacin I can be classified as substances with high binding affinity for HSA and RSA. CD analysis showed that cucurbitacin E and cucurbitacin I modify the binding of biliverdin to albumins through opposite allosteric modulation (positive for HSA, negative for RSA), confirming that care should be taken when extrapolating the pharmacokinetic data between species.
3

Farmacocinética populacional e ligação as proteínas plasmáticas da cucurbitacina E e seu metabólito cucurbitacina I em ratos / Population pharmacokinetics and plasma protein binding of cucurbitacin E and its metabolite cucurbitacin I in rats

Giovana Maria Lanchoti Fiori 08 September 2016 (has links)
Atualmente a cucurbitacina E é considerada uma candidata a fármaco em razão de sua atividade anticâncer, reconhecimento de seus alvos moleculares e sinergismo com outros fármacos utilizados no tratamento do câncer. Porém, ainda não é possível seu uso na clínica devido a importantes lacunas na literatura relativas a ensaios de farmacocinética pré-clínicos e clínicos. A cucurbitacina E é hidrolisada a cucurbitacina I em plasma e em microssomas de fígado humano. O presente estudo visa avaliar a farmacocinética populacional e ligação as proteínas plasmáticas da cucurbitacina E e seu metabólito cucurbitacina I em plasma de ratos. O método de análise sequencial da cucurbitacina E e cucurbitacina I em plasma de ratos foi desenvolvido utilizando LCMS/ MS. Alíquotas de 50 ?L de plasma foram desproteinizadas com acetonitrila e os resíduos reconstituídos com acetonitrila:água (1:1, v/v) e adicionados do padrão interno clobazam. Os extratos foram injetados na coluna RP-18 com fase móvel constituída por mistura de acetonitrila:água:metanol (32:35:33, v/v/v). O método é preciso e exato com linearidade no intervalo de 1-100 ng de cucurbitacina E/mL de plasma e de 0,4-200 ng de cucurbitacina I/mL de plasma. O método foi aplicado na avaliação da farmacocinética da cucurbitacina E administrada a ratos machos Wistar em dose única oral (gavagem) e intravenosa de 1mg/kg dissolvida em DMSO e tampão fosfato salino pH 7,4 (5:95, v/v). As amostras seriadas de sangue foram coletadas até 24 h após a administração oral ou intravenosa. As concentrações plasmáticas de cucurbitacina E foram quantificadas até 16 h somente após a administração intravenosa, enquanto as concentrações plasmáticas de cucurbitacina I permaneceram abaixo dos valores de LIQ seguindo a administração oral ou intravenosa. O modelo de farmacocinética populacional foi desenvolvido para a cucurbitacina E administrada por via intravenosa com o auxílio do programa NONMEM com adequada qualidade de ajuste e desempenho preditivo. O perfil farmacocinético da cucurbitacina E administrada por via intravenosa foi descrito por modelo bicompartimental com distribuição e eliminação de primeira ordem com os seguintes parâmetros farmacocinéticos: tempo de liberação (D) de 0,45 h, volume de distribuição (Vd) de 27,22 L, clearance (Cl) de 4,13 L/h e meiavida de eliminação (t1/2) de 4,57 h. As interações da cucurbitacina E e cucurbitacina I com as albuminas séricas humana (HSA) e de rato (RSA) foram investigadas utilizando biossensor óptico baseado em ressonância de plasma de superfície (SPR) e espectroscopia de dicroísmo circular (CD). Os dados de ligação das cucurbitacinas a albuminas foram obtidos por experimentos de competição de CD com biliverdina. Os dados de SPR revelaram um evento de ligação inédito entre a cucurbitacina I e a HSA e as afinidades de ligação da cucurbitacina E e cucurbitacina I são maiores para a RSA do que para a HSA. A cucurbitacina E e a cucurbitacina I podem ser classificadas como substâncias de alta afinidade de ligação com a HSA e com a RSA. A análise de CD mostrou que a cucurbitacina E e a cucurbitacina I modificam a ligação da biliverdina as albuminas através de modulação alostérica oposta (positiva para HSA, negativa para RSA), confirmando a necessidade de cuidados na extrapolação de dados farmacocinéticos pré-clínicos para clínicos. / Cucurbitacin E is currently considered a drug candidate due to its anticancer activity, recognition of its molecular targets, and synergism with other drugs used for cancer treatment. However, the use of cucurbitacin E in clinical practice is not possible because of important research gaps regarding its preclinical and clinical pharmacokinetic characteristics. Cucurbitacin E is hydrolyzed to cucurbitacin I in plasma and in human liver microsomes. The aim of this study was to evaluate the population pharmacokinetics and plasma protein binding of cucurbitacin E and of its metabolite cucurbitacin I in rats. The method for the sequential analysis of cucurbitacins E and I in rat plasma was developed using LC-MS/MS. Plasma aliquots of 50 ?L were deproteinized with acetonitrile, the residues were reconstituted in acetonitrile:water (1:1, v/v), and clobazam was added as internal standard. The extracts were injected into an RP-18 column using a mobile phase consisting of a mixture of acetonitrile:water:methanol (32:35:33, v/v/v). The method was precise and accurate, showing linearities at a range of 1-100 ng cucurbitacin E/mL plasma and of 0.4-200 ng cucurbitacin I/mL plasma. The method was applied to the pharmacokinetic evaluation of cucurbitacin E administered to male Wistar rats at a single oral (gavage) or intravenous dose of 1 mg/kg dissolved in DMSO and phosphate-buffered saline, pH 7.4 (5:95, v/v). Serial blood samples were collected up to 24 h after oral or intravenous administration. The plasma concentrations of cucurbitacin E were quantified up to 16 h only after intravenous administration, while the plasma concentrations of cucurbitacin I remained below the limit of quantification after oral or intravenous administration. The population pharmacokinetic model was developed for administered intravenously cucurbitacin E using the NONMEM program, with adequate goodness of fit and predictive performance. The pharmacokinetic profile of intravenously administered cucurbitacin E was described by a two-compartment model with first-order distribution and elimination. The following pharmacokinetic parameters were obtained: release time (D) of 0.45 h, volume of distribution (Vd) of 27.22 L, clearance (Cl) of 4.13 L/h, and elimination half-life (t1/2) of 4.57 h. The interactions of cucurbitacin E and I with human (HSA) and rat (RSA) serum albumins were investigated using an optical biosensor by surface plasmon resonance (SPR) and circular dichroism (CD) spectroscopy. The binding data of the cucurbitacins to albumins were obtained by CD competition experiments with biliverdin. The SPR data revealed an undescribed binding event between cucurbitacin I and HSA and the binding affinities of cucurbitacin E and cucurbitacin I were higher for RSA than for HSA. Cucurbitacin E and cucurbitacin I can be classified as substances with high binding affinity for HSA and RSA. CD analysis showed that cucurbitacin E and cucurbitacin I modify the binding of biliverdin to albumins through opposite allosteric modulation (positive for HSA, negative for RSA), confirming that care should be taken when extrapolating the pharmacokinetic data between species.
4

Propriétés anti-inflammatoires des statines, des triterpénoïdes et des dérivés de thiazole : rôle de la hème-oxygénase-1 et de la cyclooxygénase-2 / Anti-inflammatory properties of statins, triterpenoids and thiazole derivatives : role of heme oxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2)

Ghewa, El Achkar 05 November 2015 (has links)
Les statines sont des inhibiteurs sélectifs de la 3-hydroxy-3-méthylglutaryl-coenzyme A réductase, utilisées pour diminuer la biosynthèse du cholestérol. Ces molécules possèdent en plus de leur capacité à réduire le cholestérol des effets pléiotropiques comme les propriétés anti-inflammatoires et anti-oxydantes. Les cucurbitacines sont des triterpènes dérivés des plantes, ayant des propriétés biologiques diverses comme les effets anti-inflammatoires et anticancéreux, associées toutefois à une toxicité élevée. Les dérivés de thiazole sont des molécules contenant un noyau hétérocyclique formé de trois atomes de carbones, un atome de sulfure et un atome d'azote, disposant des effets anti-inflammatoires importantes. Les cyclooxygénases et les hème-oxygénases jouent un rôle dans l'inflammation et le stress oxydatif et sont les cibles des statines et des cucurbitacines in vitro. Les dérivés de thiazole peuvent inhiber plutôt l'activité enzymatique des cyclooxygénases. Le but de ma thèse est d'étudier les effets de ces 3 molécules in vivo et d'analyser si possible les mécanismes impliqués, comme par exemple pour les statines. Pour cela, nous avons eu recours chez les souris C57BL/6 au modèle d'inflammation de la poche à air-stérile injecté par le zymosan.Nous avons d'abord montré que le traitement des souris avec l'atorvastatine pendant 10 jours a réduit la migration des cellules dans l'exsudat de la poche à air ainsi que l'expression de gènes des marqueurs pro-inflammatoires tels que les cytokines, les chimiokines, la cyclooxygénase-2 et la nitric oxide synthase -II. Le taux de la prostaglandine E2 et de l'interleukine-6 a été également réduit. L'inhibition de l'hème-oxygénase-1 par son inhibiteur sélectif, tin protoporphyrine, a partiellement réduit l'effet inhibiteur de l'atorvastatine sur la migration des cellules et sur certaines cytokines suggérant un rôle important de la l'hème-oxygénase-1 dans les propriétés anti-inflammatoires in vivo.En parallèle, nous avons utilisé ce modèle animal tester l'effet de la cucurbitacine E sur l'inflammation et évaluer le rôle d'encapsulation in vivo dans des liposomes à base de phosphatidylcholine. Nous avons démontré que la cucurbitacine E libre (12.5 μg/poche ou 25 μg/poche) a tendance à diminuer l'interleukine-6, l'hème oxygénase-1 et la cyclooxygénase-2 alors que la cucurbitacine E encapsulée (12.5 μg/poche) a significativement réduit la prostaglandine E2, l'interleukine-6 et le taux de nitrite sans affecter le niveau d'ARNm de la cyclooxygénase-2 et l'hème oxygénase-1. Nos résultats suggèrent que l'incorporation de la cucurbitacine E dans des liposomes améliore son effet anti-inflammatoire et réduit sa cytotoxicité.Finalement, deux dérivés de thiazole qui diffèrent dans leur structure par la présence d'un groupement butyle- ou benzyle- sur leur chaîne latérale, ont été explorés dans ce modèle. Nous avons montré que le dérivé de thiazole contenant le groupe benzyle est sélectif de la cyclooxygénase-2 dans les macrophages et le modèle in vivo chez la souris.En résumé, mon travail de thèse met en évidence in vivo les effets anti-inflammatoires des statines et le rôle de l'hème oxygénase-1, et permet en plus la caractérisation des effets anti-inflammatoires des cucurbitacines et des dérivés de thiazole. L'ensemble de ces résultats renforcent les effets anti-inflammatoires de ces substances et démontre in vivo leur effet et les suggèrent comme molécules anti-inflammatoires. / Statins are selective competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase used to lower cholesterol biosynthesis and have multiple pleiotropic effects beyond lowering cholesterol such as anti-inflammatory and anti-oxidant properties. Cucurbitacins are triterpenoid derived from plants and exhibit potential anti-inflammatory and anticancer properties though they have a high cytotoxicity. Thiazole derivatives are molecules containing heterocyclic ring with three carbons, one sulfur and one nitrogen atom, with important anti-inflammatory activities. Cyclooxygenases and heme-oxygenases play a role in inflammation and oxidative stress and are targets for statins or cucurbitacins in vitro. Thiazole derivatives are potential inhibitors of cyclooxygenases. The aim of my thesis is to investigate the anti-inflammatory effect of these three compounds in vivo and attempt to analyze the mechanisms involved, mainly for statins. Thus we set up an animal model of inflammation in C57BL/6 corresponding to the zymosan -injected dorsal sterile air pouch.First we have shown that treatment of mice with atorvastatin for 10 days reduced cell migration in the exudate of the air pouch as well as the expression of inflammatory markers such as cytokines, chemokines, cyclooxygenase-2 and nitric oxide synthase -II. The synthesis of prostaglandin E2 and interleukin-6 was also reduced. Inhibition of heme-oxygenase-1 by the selective inhibitor tin protoporphyrin partially diminished the inhibitory effect of statins on cell migration and some cytokines suggesting a significant role of HO-1 in the anti-inflammatory properties for atorvastatin in vivo.For cucurbitacins, we used the same animal model to investigate the effect of this substance in vivo and further assess the beneficial effect of encapsulating cucurbitacin in phosphatidylcholine-liposomes. Free cucurbitacin E (12.5 μg/pouch or 25 μg/pouch) tended to increase interleukin-6, decrease heme oxygenase-1 and cyclooxygenase-2 whereas cucurbitacin E loaded liposomes (12.5 μg/pouch) significantly reduced prostaglandin E2, interleukin-6 and nitrite without affecting cyclooxygenase-2 and heme oxygenase-1 mRNA levels. We demonstrated that the incorporation of Cuc E into liposomes enhances its anti-inflammatory effect and reduces its cytotoxicity.Finally, we used the dorsal air pouch model to investigate the anti-inflammatory effect of two thiazole derivatives that differ in their side chain by the presence of butyl or benzyl group. In addition to analyzing their effect on cyclooxygenase activity in human blood platelets, on recombinant COX-1 and in culture macrophage cell lines, we demonstrated their capacity to block cyclooxygenase-dependent prostaglandin synthesis in the lumen of the air pouch.In summary, my thesis presents in vivo evidence for the anti-inflammatory effects of atorvastatin dependent on HO-1 activity. My studies characterized the anti-inflammatory effects of cucurbitacins and thiazole derivatives. All these results support the anti-inflammatory effects of these substances and suggested them as potential anti-inflammatory substances.
5

Determining the overall sensitivities of swiss chard to cucurbitacin-containing phytonematicides under different conditions

Mashela, Tshepo Segwadi January 2020 (has links)
Thesis (M.Sc. (Agriculture, Plant Protection)) -- University of Limpopo, 2020 / The unavailability of environment-friendly nematicides for managing root-knot (Meloidogyne species) nematodes in crop husbandry have led to various alternative methods being sort which includes the development of cucurbitacin-containing phytonematicides. The cited phytonematicides consistently suppressed nematode numbers on different crops under greenhouse, microplot and field conditions, although there is lack of information on how the products would affect susceptible Swiss chard infected by root-knot nematodes. Swiss chard is one of most nutritious vegetables, grown throughout the year and is well adapted to different soil types. However, these products have the potential to induce phytotoxicity on various crops, if applied improperly. Phytotoxicity of phytonematicides on different crops, has been resolved by deriving Mean Concentration Stimulation Point (MCSP). The MCSP, developed using the Curve-fitting Allelochemical Response Data (CARD) computer-based model, is crop-specific, hence it should be developed for every crop. The objectives of this study were to investigate (1) whether population densities of Meloidogyne species, growth and accumulation of selected nutrient elements in Swiss chard would respond to increasing concentration of Nemarioc-AL and Nemafric-BL phytonematicides under greenhouse and microplot conditions and (2) whether the nemarioc-group and nemafric-group phytonematicides in liquid and granular formulations would affect population densities of Meloidogyne species and the productivity of Swiss chard with related accumulation of nutrient elements in leaf tissues under field conditions. Parallel experiments for Nemarioc-AL and Nemafric-BL phytonematicides were conducted concurrently under greenhouse and microplot conditions. Greenhouse experiment was prepared by arranging 25-cm-diameter plasticpods on greenhouse benches, whereas microplot experiment was prepared by digging holes and inserting 30-cm-diameter plastic pots in the field. The four-week-old Swiss chard seedlings were transplanted into the pots, filled with steam-pasteurised loam, sand and Hygromix-T at 3:1:1 (v/v) ratio. Treatments comprised 0, 2, 4, 8, 16, 32 and 64% phytonematicides arranged in randomised complete block design (RCBD), with six replications. Treatments were applied seven days after inoculation, with 3000 eggs and J2 of M. incognita race 4 under greenhouse conditions, whereas under microplot conditions were inoculated with 6000 eggs and J2 of M. javanica. Under field conditions, treatments comprised untreated control (0), 2 g Nemarioc-AG and 3% Nemarioc-AL phytonematicides (nemarioc-group) or 0, 2 g Nemafric-BG and 3% Nemafric-BL phytonematicides (nemafric-group), arranged in RCBD, each experiment with 8 replications. At 56 days after initiation of treatments, eggs in roots, J2 in roots and Pf exhibited negative quadratic relations under both greenhouse and microplot conditions. Under greenhouse conditions, dry shoot mass (R2 = 0.81), dry root mass (R2 = 0.87) and leaf number (R2 = 0.91) over Nemarioc-AL phytonematicide exhibited positive quadratic relations. In contrast, dry shoot mass (R2 = 0.78), dry root mass (R2 = 0.93) and leaf number (R2 = 0.70) over Nemafric-BL phytonematicide exhibited positive quadratic relations. Under microplot conditions, dry shoot mass (R2 = 0.95) and gall rating (R2 = 0.96) over Nemarioc-AL phytonematicide, exhibited positive quadratic relations. Dry shoot mass (R2 = 0.84) and gall rating (R2 = 0.97) versus Nemafric-BL phytonematicide exhibited positive quadratic relations. Selected nutrient elements under greenhouse conditions K (R2 = 0.96), Ca (R2 = 0.79), Mg (R2 = 0.64), Fe (R2 = 0.78) and Zn (R2 = 0.77) over Nemarioc-AL phytonematicide exhibited positive quadratic relations. In contrast, only Ca (R2 = 0.90), Mg (R2 = 0.68) and Zn (R2 = 0.84) over Nemafric-BL phytonematicide exhibited positive quadratic relations, whereas K (R2 = 0.72) and Fe (R2 = 0.63) over the product exhibited negative quadratic relations. Under microplot conditions, K (R2 = 0.82), Ca (R2 = 0.90) and Mg (R2 = 0.98) over Nemarioc-AL phytonematicide exhibited positive quadratic relations, whereas Fe (R2 = 0.91) and Zn (R2 = 0.79) over the product exhibited negative quadratic relations. In contrast, K (R2 = 0.60), Ca (R2 = 0.68) and Zn (R2 = 0.95) over Nemafric-BL phytonematicide exhibited positive quadratic relation, whereas Mg and Fe over the product did not have significant relationships. Under greenhouse conditions, MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on Swiss chard were 3.03 and 2.36%, whereas overall sensitivity (∑k) values of the crop to the product were 3 and 0 units, respectively. In contrast, MCSP values of Nemarioc-AL and Nemafric-BL phytonematicides on Swiss chard under microplot conditions was successfully established at 3.71 and 3.33%, whereas the ∑k values were 2 and 1 units, respectively. Under field conditions, at 64 days after initiating the treatments, the nemarioc-group phytonematicides had highly significant effects on eggs in roots and reproductive potential (RP), contributing 79 and 77% in total treatment variation (TTV) of the respective variables. In contrast, the nemafric-group phytonematicides had highly significant effects on eggs in roots and RP, contributing 67 and 76% in TTV of the respective variables. Under field conditions, all plant growth variables were not significantly affected by the treatments. The nemarioc-group phytonematicides had significant effects on K and Mg in leaf tissues of Swiss chard, contributing nemafric-group phytonematicides had significant effects on Mg, contributing 62% in TTV of the variable. In conclusion, the products could be used on Swiss chard for managing population densities of Meloidogyne species. However, due to the sensitivity of Swiss chard to the products, it would be necessary to use the derived MCSP values to determine the application intervals of the products on the test cultigen / National Research Foundation (NRF) Agricultural Research Council (ARC)
6

Interactive effects of cucurbitacin-containing phytonematicides and biomuti on growth of citrus rootstock seedlings and accumulation of nutrient elements in leaf tissues

Mokoele, Tlou January 2019 (has links)
Thesis (M.Sc. Agriculture (Horticulture)) -- University of Limpopo, 2019 / Cucurbitacin-containing phytonematicides and a variety of unidentified soil microbes in suppressive soils (Biomuti) had been consistent in suppression of population densities of root-knot (Meloidogyne spp.) nematodes on various crops. However, information on suppressive effects of cucurbitacin-containing phytonematicides and Biomuti on citrus growth and suppression of the citrus nematode (Tylenchulus semipenetrans) had not been documented. The objective of this study therefore, was to determine the interactive effects of Nemarioc-AL and Nemafric-BL phytonematicides and Biomuti on growth and nutrient elements in leaf tissues of Poncirus trifoliata rootstock seedlings under greenhouse and field conditions. Uniform six-month-old citrus rootstock seedlings [Du Roi Nursery (Portion 21, Junction Farm, Letsitele)] were transplanted in 4 L plastic bags filled with growing mixture comprising steam-pasteurised (300°C for 1 h) loam and compost (cattle manure, chicken manure, sawdust, grass, woodchips and effective microorganisms) at 4:1 (v/v) ratio and placed on greenhouse benches. A 2 × 2 × 2 factorial experiment with the first, second and third factors being Nemarioc-AL phytonematicide (A) and Nemafric-BL phytonematicide (B) and Biomuti (M), were arranged in randomized complete block design, with 10 blocks. The treatment combinations were A0B0M0, A1B0M0, A0B1M0, A0B0M1, A1B1M0, A1B0M1, A0B1M1 and A1B1M1, with 1 and 0 signifying with and without the indicated factor. Treatments were applied at 3% dilution for each product as substitute to irrigation at a 17-day application interval. Under greenhouse conditions, seedlings were irrigated every other day with 300 ml chlorine-free tap water. Under field conditions, the study was executed using similar procedures to those in the greenhouse trial, except that the citrus seedlings were transplanted directly into the soil of a prepared field and seedlings were irrigated using drip irrigation for 2 h every xxi other day. At 64 days after transplanting, plant growth variables were measured and foliar nutrient elements were quantified using the Inductively Coupled Plasma Optical Emission Spectrometry (ICPE-9000). Data were subjected to analysis of variance using SAS software. Significant second and first order interactions were further expressed using the three-way and two-way tables, respectively. At 64 days after the treatments, under greenhouse conditions Nemarioc-AL × Nemafric-BL × Biomuti interaction was not significant (P ≤ 0.05) on plant variables of seedling rootstocks in both experiments. In contrast, the Nemarioc-AL × Biomuti interaction was highly significant (P ≤ 0.01) on stem diameter, contributing 52% in TTV of the variable in Experiment 1 (Table 3.1), whereas in Experiment 2 the interaction was highly significant on dry shoot mass, contributing 33% in TTV of the variable (Table 3.2). Relative to untreated control, the two-way matrix showed that the Nemarioc-AL × Biomuti interaction, Nemarioc-AL phytonematicide and Biomuti each increased stem diameter by 1%, 12% and 5%, respectively (Table 3.3). Relative to untreated control, the two-way matrix table showed that Nemarioc-AL × Biomuti interaction increased dry shoot mass by 10%, whereas Nemarioc-AL phytonematicide and Biomuti each increased dry shoot mass by 23% and 17%, respectively (Table 3.4). Nemarioc-AL × Nemafric-BL × Biomuti interaction was not significant (P ≤ 0.05) for all plant growth variables in both experiments. However, Nemarioc-AL × Nemafric-BL interaction was significant for leaf number and stem diameter contributing 45% and 29% in TTV of the respective variables in Experiment 2 (Table 4.1). Relative to untreated control, two way matrix table showed that the Nemarioc-AL × Nemafric-BL interaction and Nemafric-BL phytonematicides each increased stem diameter by 8% and 11% respectively, whereas Nemarioc-AL phytonematicides reduced stem diameter by 2% (Table 4.2). Also using two-way matrix table showed that Nemarioc-AL and Nemafric xxii BL phytonematicides each increased leaf number by 1% and 7% respectively, whereas the Nemarioc-AL × Nemafric-BL interaction increased leaf number by 6% (Table 4.2). Nemafric-BL × Biomuti interaction was significant for stem diameter contributing 29% in TTV of the respective variable in Experiment 2 (Table 4.1). Using two-way matrix table showed that Nemafric-BL × Biomuti interaction and Nemafric-BL phytonematicide each increased stem diameter by 7%, whereas Biomuti alone reduced stem diameter by 6% (Table 4.3). Under greenhouse conditions, the second order Nemarioc-AL × Nemafric-BL × Biomuti interaction was highly significant for foliar Mg, contributing 5% in TTV of the variable in Experiment 1 (Table 3.4). Relative to untreated control, the three-way matrix table showed that the three factors, Nemafric BL phytonematicide and Biomuti each reduced Mg by 33%, 35% and 53%, respectively, whereas Nemarioc-AL phytonematicide increased Mg by 12% (Table 3.5). Nemarioc-AL × Biomuti interaction was highly significant for foliar Mg, contributing 9% in TTV of the variable in Experiment 1 (Table 3.4). Relative to untreated control, the two-way matrix table showed that the Nemarioc-AL × Biomuti interaction and Nemafric-BL phytonematicide reduced Mg by 42% and 12%, respectively, whereas Nemarioc-AL phytonematicide alone increased Mg by 14% (Table 3.6). Nemarioc-AL × Biomuti interaction was highly significant for foliar Ca and Mg, contributing 59 and 4% in TTV of the respective variables in Experiment 1 (Table 3.4). Also using two-way matrix table showed that Nemarioc-AL phytonematicide and Biomuti separately reduced Ca by 12% and 22% respectively, whereas the Nemarioc-AL × Biomuti interaction increased Ca by 1% (Table 3.7). Relative to untreated control, the Nemarioc-AL × Biomuti interaction, Nemarioc-AL phytonematicide and Biomuti reduced foliar Mg by 26%, 21% and 33%, respectively (Table 3.7). Nemafric-BL × Biomuti interaction was highly significant for foliar Mg and P, contributing 50 and 21% xxiii in Experiment 1, whereas in Experiment 2 the interaction was significant for foliar Ca and Mg, contributing 41% and 38% in TTV of the respective variables (Table 3.4). Relative to untreated control, the two-way matrix table showed that Nemafric-BL phytonematicide and Biomuti individually reduced Mg by 60% and 51%, respectively, whereas the Nemafric-BL × Biomuti interaction reduced Mg by 38% (Table 3.8). Also, in the two-way matrix table the Nemafric-BL × Biomuti interaction and Nemafric-BL phytonematicide each reduced Mg by 13% and 2%, respectively, whereas Biomuti alone increased P by 17% (Table 3.8). Relative to untreated control, Nemafric-BL phytonematicide and Biomuti reduced Ca by 29% and 18%, respectively, whereas Nemafric-BL × Biomuti interaction reduced Ca by 14% (Table 3.9). Using two-way matrix table showed that Nemafric-BL phytonematicide and Biomuti separately reduced Mg by 21%, whereas the Nemafric-BL × Biomuti interaction reduced Mg by 16% (Table 3.9). Interaction of Nemarioc-AL × Nemafric-BL × Biomuti had no significant effect on K, Na and Zn in both experiments. Under field conditions, the second order Nemarioc-AL × Nemafric-BL × Biomuti interaction was not significant for all the nutrient elements in Experiment 1. Nemarioc-AL × Biomuti was significant for Ca, K and highly significant for Mg and P, contributing 31, 8, 23 and 19% in TTV of the respective variables in Experiment 1 (Table 4.4). Relative to untreated control, two-way matrix table showed that Nemarioc-AL phytonematicide and Biomuti each increased Ca by 15% and 26% repectiviely, whereas the Nemarioc-AL × Biomuti increased Ca by 17% (Table 4.5). Interaction of Nemarioc-AL × Biomuti, Nemarioc-AL phytonematicide and Biomuti each reduced Mg by 48%, 70% and 37% (Table 4.5). Also using two-way matrix table showed that Nemarioc-AL phytonematicide and Biomuti each increased P by 4% and 5% respectively, whereas the Nemarioc-AL × Biomuti interaction increased P by 50% (Table 4.5). Realative to untreated control, xxiv Biomuti and Nemarioc-AL phytonematicide each reduced K by 10% and 5% respectively, whereas the Nemarioc-AL × Nemafric-BL interaction reduced K by 38% (Table 4.7). Nemafric-BL × Biomuti interaction was highly significant for Mg and Zn, contributing 11% and 29% in TTV of the respective variables in Experiment 1 (Table 4.4). Relative to untreated control, two-way matrix table showed that Nemarioc-AL phytonematicide and Biomuti separately increased Mg by 1% and 19% respectiviely, whereas the Nemafric-BL × Biomuti interaction reduced Mg by 43% (Table 4.6). Nemafric-BL × Biomuti interaction, Nemafric-BL phytonematicide and Biomuti each reduced Zn by 35%, 31% and 64% (Table 4.6). Using three-way matrix table showed that the Nemarioc-AL × Nemafric-BL × Biomuti, Nemarioc-AL × Nemafric-BL, Nemarioc-AL × Biomuti and Nemafric-BL × Biomuti interactions each increased Ca by 44%, 18%,10% and 24% (Table 4.8). Further the matrix showed that Nemarioc-AL, Nemafric-BL phytonematicides and Biomuti each increased Ca by 25%, 31% and 23% (Table 4.8). Under both greenhouse and field conditions, although second and first order interactions were not consistent of various variables, results demonstrated that the three products interacted significantly for various products. In conclusion, the study suggested that these innovative products could be used in combination with Biomuti to stimulate plant growth but had antagonistic effects on accumulation of nutrient elements in P. trifoliata rootstock seedlings, suggesting that the products should be applied separately. / Agricultural Research Council-Universities Collaboration Centre and the National Research Foundation (NRF)
7

Nodulation bacteria, cucurbitacin-containing phytonematicides, dosage model and nutritional water productivity of sutherlandia frutescens in the context of climate-smart agriculture

Masenya, Tsobedu Absalom January 2022 (has links)
Thesis (Ph.D. Agriculture (Plant Production)) -- University of Limpopo, 2022 / The unique phytochemical composition of the medicinal plant cancer bush (Sutherlandia frutescens) have made its foliage to gain much attention in South Africa due to its health benefits. In situ harvesting of the plant parts of this important species serve as one potential strategy to avert its extinction through whole plant harvesting, a common practice by rural communities. However, such a strategy is limited by lack of information on the agronomic requirements of the plant species and its susceptibility to root-knot (Meloidogyne species) nematodes. The objectives of the study were four-fold, namely, to: (1) identify nodulation bacteria associated with wild S. frutescens using morphological and biochemical techniques, (2) assess the efficacy of the nodulation isolates from different centres of biodiversity of S. frutescens in Limpopo Province, South Africa (3) test the compatibility of cucurbitacin-containing phytonematicides on S. frutescens for managing population densities of Meloidogyne species and (4) determine the nutritional water productivity (NWP) of S. frutescens in association with water scarcity of the region where the plant species originated. In achieving Objective 1, nodules from S. frutescens roots were washed in distilled water and healthy, undamaged, firm and pink nodules were sterilised. Aseptic nodules from S. frutescens roots and commercial strains were transferred into a smasher biomerieux polythene bag containing 10 ml distilled water and crashed to produce a milky suspension the milky suspension was streaked on Yeast extract mannitol agar (YEMA). After gram reaction, colony characterisation includes the investigation of shape, colour, configuration, elevation and margin of bacterial colony as observed in colonies on nutrient agar plates of overnight grown microorganisms using a microscope. The medium for biochemical test was prepared, inoculated with 5 μl purified xxv bacterial cultures and incubated at 37°C for 48 h. Identification of the bacterial isolates was performed using VITEK 2 Systems (bioMérieux, Inc., North Carolina, USA). Using morphological and biochemical techniques, the bacterial species associated with roots of S. frutescens in the wild were assayed primarily those in the genera Raoutella ornithinolytica and Enterobacter cloacae species dissolvens. The VITEK 2 Systems confirmed the identification of the bacterial species from 80 to 96% of the samples. Three species were confirmed from another sampling area, Sphingomonas paucimobills, Raoutella ornithinolytica and Enterobacter cloacae species dissolvens from by 86 to 96% of the samples. In achieving Objective 2, the five treatments, namely, Bradyrhizobium spp. (Arachis) strain, Rhizobium leguminosarum strain, Tubatse strain, Sebayeng strain and untreated control, were laid-out in a randomised complete block design, with seven replications during the first season (Experiment 1) and with eight replications during the second season (Experiment 2). The seasonal interactions (Experiment 1 × Experiment 2) on plant and nutrient elements were not significant (P ≤ 0.05) and data for the two seasons were pooled (n = 75). Relative to untreated control, commercial (Bradyrhizobium and Rhizobium strain) and native strains (Tubatse and Sebayeng strain) significantly increased plant height by 31, 33, 44 and 40%, respectively, root length by 30, 41, 40 and 42%, respectively and dry shoot mass by 48,195 and 17%, respectively. Similarly, rhizobia strains significantly contributed to the increase in nitrogen assimilation by 7, 25 and 80%, respectively, protein synthesis by 13, 10, 24, 69%, respectively, and symbiotic efficiency by 31, 133, 292 and 82%, respectively. However, rhizobia inoculants had no significant effects on potassium and phosphorus in leaf tissues. In achieving Objective 3, in Mean Concentration Stimulation Point (MCSP) experiments, seven treatments, xxvi namely, 0, 2, 4, 8, 16, 32 and 64% for each phytonematicide, were arranged in a randomised complete block design (RCBD), with 8 replicates. In application interval experiments, treatments, based on “weeks-per-month-of-30 days” for M. javanica, which translated to 1, 2, 3 and 4 weeks, were arranged in a RCBD, with 10 replicates. Nemarioc-AL and Nemafric-BL phytonematicides had MCSP values of 3.43 and 4.03%, respectively, with the plant having high tolerance level to the products. The respective application interval of the two products for managing population densities of Meloidogyne species were 29 and 17 days. The dosage models for Nemarioc-AL and Nemafric-BL phytonematicides were 6.62 and 13.26%, respectively. In achieving Objective 5, the study used nine treatments designated as T1, T2, T3, T4, T5, T6, T7, T8 and T9, respectively, consisting of 1, 2, 3, 4, 5, 6, 7, 8 and 9 seedlings/hole of drip irrigation transplanted using a 3S planter under field conditions, arranged in randomised complete block design (RCBD) with 9 replications (n = 81) in two seasons. The NWP of total flavonoids, total tannin and total phenol exhibited positive quadratic relations in varied planting density suggesting that this cultural practices could be manipulated to improve NWP of cancer bush. In conclusion, the wild bacterial isolates, sampled from S. frutescens plant grown in the field, outperformed the commercial bacterial strains in enhancing the productivity of the test plants. The empirically established dosage model for Nemarioc-AL and Nemafric-BL phytonematicides could be used to control Meloidogyne species in cancer bush production. There is a need to further investigate the responses of the identified strains to the test phytonematicides. Findings of the study openend new frontiers in the development and commercialisation of the observed native bacterial strains for the cultivation of S. frutescens, which has excellent medicinal importance as a cure or management for cancer. / Agricultural Research Council-Universities Collaboration Centre, the National Research Foundation (NRF) and the Flemish Inter-University Council of Belgium
8

Pea seed priming in cucurbitacin-containing phytomaticides for generating mean concentration point

Ntuli, Vafana Attraction January 2021 (has links)
Thesis (M.Sc. Agriculture (Plant Protection)) -- University of Limpopo, 2021 / In use of phytonematicides as an alternative to synthetic chemical nematicides, the major challenge had been the development of appropriate application technologies, which are currently limited to the ground leaching technology (GLT) and botinemagation (BNT) systems. The former is labour-intensive, whereas the latter requires infrastructure that could be costly for smallholder farmers. The priming of seeds with hypogenous germination properties in phytonematicide solutions could serve as an alternative method of the application of phytonematicides, where the cotyledons would serve as carriers of the active ingredients that are leached into the rhizosphere for suppression of nematode numbers. However, since germination is a chemical process, it is not known whether the active ingredients in cucurbitacin containing phytonematicides would interfere with germination and the subsequent emergence of the seedlings through the incidence of phytotoxicity as observed in the use of the products in crop production. The objectives of the study, therefore, were (1) to investigate the sensitivity and overall sensitivity of pea (Pisum sativum L.) plants to Nemarioc-AL and Nemafric-BL phytonematicides, and (2) to determine the mean concentration point (MCSP) for pea-inoculated with Meloidogyne incognita under greenhouse and microplot conditions, where seeds were previously primed in phytonematicide solutions. Two separate trials were conducted with seven treatments, namely, 0, 2, 4, 8, 16, 32 and 64% Nemarioc-AL or Nemafric-BL phytonematicide, arranged in completely randomised design (CRD), with 8 replications each. Pea seeds were primed in Nemarioc-AL and Nemafric-BL phytonematicide solutions for two hours and shade dried prior to sowing. In vitro trial, 10 seeds were spread uniformly on a moistened filter paper in sterilised petri-dishes with lids and placed in an incubator at 25oC. In vivo trials were under greenhouse and micro-plot conditions, pea seeds were sown in 25-cm and 30-cm diameter plastic pots, respectively. Pots were filled with pasteurised loam soil. Seedlings were inoculated with 5 000 eggs + second-stage juveniles (J2) of M. incognita. Treatments in each case included priming seeds as explained earlier, arranged in a randomised complete block design (RCBD), with 6 replications under greenhouse conditions and 8 replications under micro-plot conditions. In all cases, plant growth variables were assessed using the Curve-fitting Allelochemical Response Dose (CARD) model to generate biological indices which were used to calculate MCSP and the overall sensitivity (Σk). Nematode variables in inoculated trials were assessed using the regression model. In vitro trials, germination variables had positive quadratic relation versus Nemafric-BL phytonematicide, with MCSP= 0.62 % and ∑k = 34 units. In contrast, tested germination variables exhibited negative quadratic relations versus Nemarioc-AL phytonematicide. In greenhouse trials, MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides were 0.62 and 2.18 %, respectively, with ∑k = 0. Plant height (R2 = 0.86), stem diameter (R2 = 0.93) and chlorophyll content (R2 = 0.85), exhibited positive quadratic relationship against Nemarioc-AL phytonematicide, whereas, plant height (R2 = 0.95), stem diameter (R2 = 0.92), chlorophyll content (R2 = 0.89), number of flowers (R2 = 0.93) and dry shoot mass (R2 = 0.94), exhibited positive quadratic relationship against Nemafric-BL phytonematicide. In micro-plot trials, MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides were 0.71 and 2.45 %, respectively, with ∑k = 0. Plant height (R2 = 0.95), stem diameter (R2 = 0.98), chlorophyll content (R2 = 0.98), and gall ratings (R2 = 0.98), exhibited positive quadratic relationships against Nemarioc-AL phytonematicide, while chlorophyll content (R2 = 0.97) and gall ratings (R2 = 0.96) exhibited positive quadratic relationships against Nemafric-BL phytonematicide. All degrees of Nemarioc-AL and Nemafric-BL phytonematicides profoundly reduced nematode numbers under greenhouse and micro-plot trials. In conclusion, both Nemarioc-AL and Nemafric-BL phytonematicides could be applied through the priming technology on pea seeds which have hypogenous germination properties in suppression of nematode population densities. / National Research Foundation (NRF)
9

Využití polymerních proléčiv s cucurbitacinem D pro léčbu experimentálních nádorů / Use of polymer prodrugs containing cucurbitacin D for the treatment of experimental tumors

Hrabánková, Klára January 2021 (has links)
Chemotherapy is still the most widely used anti-cancer treatment. The majority of chemotherapeutics inhibit proliferating cells generally, not selectively cancer cells. The side effects associated with chemotherapy can be partly limited by conjugating a cytotoxic drug with a polymer nanocarrier. Such binding facilitates solubility in aqueous solutions, reduces systemic toxicity; and passively targets the drug directly into the tumour through the enhanced permeability and retention (EPR) effect. This thesis focuses on testing polymer conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) carrying cucurbitacin D (CuD), a naturally occurring compound with potential anti-cancer activity. The mechanism of action is not elucidated yet, but several studies have depicted the inhibitory effect on signal transducer and activator of transcription 3 (STAT3) transcription factor. A STAT3 signalling pathway is overexpressed in several cancer cell lines and is also involved in the differentiation of myeloid- derived suppressor cells (MDSCs). We examined the therapeutic effect of the HPMA copolymers based on CuD in combined therapy with other polymer chemotherapeutics. CuD conjugates have shown in vitro cytotoxic effect on several model cancer cell lines. The combination with conjugates carrying doxorubicin...
10

Étude des propriétés membranaires des vésicules lipidiques incorporant des triterpènes oxygénés bioactifs d'origine végétale : application à la cucurbitacine E et à l'érythrodiol / Membrane properties of lipid vesicles incorporating natural triterpenic bioactive molecules : application to cucurbitacin E and erythrodiol

Habib, Lamice 04 February 2014 (has links)
La cucurbitacine E et l'érythrodiol sont des triterpènes naturels oxygénés ayant respectivement un squelette tétra et pentacyclique. Ils sont reconnus pour leurs diverses propriétés biologiques. Dans ce travail de thèse, nous étudions leur interaction avec les membranes des vésicules lipidiques dans le but de mieux comprendre leur pharmacodynamie. Nous avons préparé des liposomes en absence et en présence de la cucurbitacine E et de l'érythrodiol par les techniques d'évaporation en phase inverse suivie d'une extrusion, d'hydratation du film lipidique et d'injection d'éthanol. Les caractéristiques physicochimiques des vésicules lipidiques incorporant ou non la molécule triterpénique ont été étudiées par des techniques adéquates. Les analyses de la cucurbitacine E et de l'érythrodiol par la chromatographie liquide à haute performance ont montré que leurs taux d'incorporation dans les liposomes sont élevés. Les mesures de taille obtenues par la diffusion dynamique de la lumière ont démontré que les liposomes incorporant les triterpènes présentent une taille moyenne inférieure à celle des liposomes témoins. Les images obtenues par la microscopie électronique à transmission ont confirmé la formation de vésicules sphériques. Les mesures des dimensions des vésicules observées par la microscopie à force atomique (AFM), ont révélé que les liposomes incorporant la cucurbitacine E sont plus hauts et résistent mieux à la force exercée par la pointe AFM que les liposomes témoins. Par ailleurs, les liposomes incorporant l'érythrodiol sont plus fragiles que les liposomes témoins et ont tendance à éclater en bicouches lipidiques à la surface du support. Les courbes thermiques obtenues par la calorimétrie différentielle à balayage ont permis de conclure que la cucurbitacine E est localisée à l'interface polaire-apolaire de la membrane liposomiale alors que l'érythrodiol s'insère entre les chaînes acyles des phospholipides et aboutit à la formation des domaines hétérogènes au niveau de la membrane. La cinétique de libération de la sulforhodamine B, mesurée par la spectroscopie de fluorescence, a révélé que la membrane liposomiale devient, en présence de la cucurbitacine E, plus perméable à la sulforhodamine B incorporée dans la phase aqueuse interne. L'ensemble des résultats suggère que la cucurbitacine E et l'érythrodiol interagissent avec la membrane lipidique et affectent ses propriétés physico-chimiques. Leur effet sur la membrane ne semble pas être similaire. Des études ultérieures impliquant d'autres triterpènes sont envisagées pour identifier le (s) motif (s) structural (aux) et les paramètres physico-chimiques régissant leur interaction et localisation membranaire / Cucurbitacin E and erythrodiol are natural oxygenated triterpenes having respectively, a tetra and pentacyclic skeleton. They are known for their numerous biological properties. In this thesis, we studied their interaction with the membranes of lipid vesicles to better understand their pharmacodynamics. We have prepared liposomes in the absence and presence of cucurbitacin E and erythrodiol using the reverse phase evaporation technique followed by extrusion, the hydration of lipid film and the ethanol injection techniques. The physicochemical characteristics of lipid vesicles incorporating or not the triterpenic molecules were investigated by appropriate techniques. The determination of cucurbitacin E and erythrodiol in the vesicles by high performance liquid chromatography showed high incorporation efficiencies of both triterpenes. Size measurements obtained by dynamic light scattering showed that liposomes incorporating triterpenes were smaller than empty liposomes. The images obtained by transmission electron microscopy confirmed the formation of spherical vesicles. Measurements of vesicles dimensions by atomic force microscopy (AFM) demonstrated that liposomes incorporating cucurbitacin E were higher and more resistant to the force exerted by the AFM tip than the blank liposomes. Liposomes incorporating erythrodiol were more fragile and tend to break up into lipid bilayers on the mica surface. Results obtained by differential scanning calorimetry suggested that cucurbitacin E is localized at the polar-apolar interface of the liposomal membrane while erythrodiol is inserted between the acyl chains of the phospholipids leading to the formation of heterogeneous lipid domains. The release kinetics of the sulforhodamin B encapsulated into the aqueous phase and measured by fluorescence spectroscopy revealed that the liposomal membrane becomes in the presence of cucurbitacin E, more permeable to this probe. The overall results suggest that cucurbitacin E and erythrodiol affect differently

Page generated in 0.4299 seconds