• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Comparison of Methods for Addressing Lag Uncertainty in Cumulative Exposure-Response Analyses for Time-to-Event Data

Tan, Yubo 21 September 2017 (has links)
No description available.
2

Accelerated Life Test Modeling Using Median Rank Regression

Rhodes, Austin James 01 November 2016 (has links)
Accelerated life tests (ALT) are appealing to practitioners seeking to maximize information gleaned from reliability studies, while navigating resource constraints due to time and specimen costs. A popular approach to accelerated life testing is to design test regimes such that experimental specimens are exposed to variable stress levels across time. Such ALT experiments allow the practitioner to observe lifetime behavior across various stress levels and infer product life at use conditions using a greater number of failures than would otherwise be observed with a constant stress experiment. The downside to accelerated life tests, however, particularly for those that utilize non-constant stress levels across time on test, is that the corresponding lifetime models are largely dependent upon assumptions pertaining to variant stress. Although these assumptions drive inference at product use conditions, little to no statistical methods exist for assessing their validity. One popular assumption that is prevalent in both literature and practice is the cumulative exposure model which assumes that, at a given time on test, specimen life is solely driven by the integrated stress history and that current lifetime behavior is path independent of the stress trajectory. This dissertation challenges such black box ALT modeling procedures and focuses on the cumulative exposure model in particular. For a simple strep-stress accelerated life test, using two constant stress levels across time on test, we propose a four-parameter Weibull lifetime model that utilizes a threshold parameter to account for the stress transition. To circumvent regularity conditions imposed by maximum likelihood procedures, we use median rank regression to fit and assess our lifetime model. We improve the model fit using a novel incorporation of desirability functions and ultimately evaluate our proposed methods using an extensive simulation study. Finally, we provide an illustrative example to highlight the implementation of our method, comparing it to a corresponding Bayesian analysis. / Ph. D. / Have you ever wondered how manufacturers determine the guaranteed lifetime warranty for the products they produce? From automotive showrooms to store shelves, consumer goods often have a unique story to tell, one involving meticulous research, engineered design, and statistically driven testing. This is the realm of accelerated life testing (ALT) where reliability engineers, in their e↵orts to estimate overall product life, subject test specimens to harsher conditions than what are expected under normal operating conditions. Ideally, ALT experiments will induce multiple failures in a short amount of time and provide a basis for statistical modeling to predict failure in the field. The problem with this, however, is that such experiments require many mathematical assumptions which describe the physics of failure. This dissertation challenges one of the most common assumptions used for ALT experiments when specimens are exposed to multiple stress levels. We develop an alternative approach to the analysis of ALT data which drops this assumption (referred to as cumulative exposure) and explore the statistical properties of our method. We find that our approach has many features which will appeal to practitioners who may wish to use our procedures as they seek to understand the data gleaned from ALT experiments. Overall, this work represents an important addition to the reliability practitioner’s toolbox and will allow researchers to avoid potentially dubious assumptions concerning real world behavior.
3

Likelihood inference for multiple step-stress models from a generalized Birnbaum-Saunders distribution under time constraint

Alam, Farouq 11 1900 (has links)
Researchers conduct life testing on objects of interest in an attempt to determine their life distribution as a means of studying their reliability (or survivability). Determining the life distribution of the objects under study helps manufacturers to identify potential faults, and to improve quality. Researchers sometimes conduct accelerated life tests (ALTs) to ensure that failure among the tested units is earlier than what could result under normal operating (or environmental) conditions. Moreover, such experiments allow the experimenters to examine the effects of high levels of one or more stress factors on the lifetimes of experimental units. Examples of stress factors include, but not limited to, cycling rate, dosage, humidity, load, pressure, temperature, vibration, voltage, etc. A special class of ALT is step-stress accelerated life testing. In this type of experiments, the study sample is tested at initial stresses for a given period of time. Afterwards, the levels of the stress factors are increased in agreement with prefixed points of time called stress-change times. In practice, time and resources are limited; thus, any experiment is expected to be constrained to a deadline which is called a termination time. Hence, the observed information may be subjected to Type-I censoring. This study discusses maximum likelihood inferential methods for the parameters of multiple step-stress models from a generalized Birnbaum-Saunders distribution under time constraint alongside other inference-related problems. A couple of general inference frameworks are studied; namely, the observed likelihood (OL) framework, and the expectation-maximization (EM) framework. The last-mentioned framework is considered since there is a possibility that Type-I censored data are obtained. In the first framework, the scoring algorithm is used to get the maximum likelihood estimators (MLEs) for the model parameters. In the second framework, EM-based algorithms are utilized to determine the required MLEs. Obtaining observed information matrices under both frameworks is also discussed. Accordingly, asymptotic and bootstrap-based interval estimators for the model parameters are derived. Model discrimination within the considered generalized Birnbaum-Saunders distribution is carried out by likelihood ratio test as well as by information-based criteria. The discussed step-stress models are illustrated by analyzing three real-life datasets. Accordingly, establishing optimal multiple step-stress test plans based on cost considerations and three optimality criteria is discussed. Since maximum likelihood estimators are obtained by numerical optimization that involves maximizing some objective functions, optimization methods used, and their software implementations in R are discussed. Because of the computational aspects are in focus in this study, the benefits of parallel computing in R, as a high-performance computational approach, are briefly addressed. Numerical examples and Monte Carlo simulations are used to illustrate and to evaluate the methods presented in this thesis. / Thesis / Doctor of Science (PhD)
4

New statistical methods to assess the effect of time-dependent exposures in case-control studies

Cao, Zhirong 12 1900 (has links)
Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins / Background: Case-control studies are very often used by epidemiologists to assess the impact of specific exposure(s) on a particular disease. These exposures may be represented by several time-dependent covariates and new methods are needed to accurately estimate their effects. Indeed, conventional logistic regression, which is the standard method to analyze case-control data, does not directly account for changes in covariate values over time. By contrast, survival analytic methods such as the Cox proportional hazards model can directly incorporate time-dependent covariates representing the individual entire exposure histories. However, it requires some careful manipulation of risk sets because of the over-sampling of cases, compared to controls, in case-control studies. As shown in a preliminary simulation study, the optimal definition of risk sets for the analysis of case-control data remains unclear and has to be investigated in the case of time-dependent variables. Objective: The overall objective is to propose and to investigate new versions of the Cox model for assessing the impact of time-dependent exposures in case-control studies, and to apply them to a real case-control dataset on lung cancer and smoking. Methods: I identified some potential new risk sets definitions (the weighted Cox model and the simple weighted Cox model), in which different weights were given to cases and controls, in order to reflect the proportions of cases and non cases in the source population. The properties of the estimates of the exposure effects that result from these new risk sets definitions were investigated through a simulation study. Various aspects of exposure were generated (intensity, duration, cumulative exposure value). The simulated case-control data were then analysed using different versions of Cox’s models corresponding to existing and new definitions of risk sets, as well as with standard logistic regression, for comparison purpose. The different regression models were then applied to real case-control data on lung cancer. The estimates of the effects of different smoking variables, obtained with the different methods, were compared to each other, as well as to simulation results. Results: The simulation results show that the estimates from the new proposed weighted Cox models, especially those from the weighted Cox model, are much less biased than the estimates from the existing Cox models that simply include or exclude future cases. In addition, the weighted Cox model was slightly, but systematically, less biased than logistic regression. The real life application shows some greater discrepancies between the estimates of the proposed Cox models and logistic regression, for some smoking time-dependent covariates. Conclusions: The results suggest that the new proposed weighted Cox models could be an interesting alternative to logistic regression for estimating the effects of time-dependent exposures in case-control studies.
5

New statistical methods to assess the effect of time-dependent exposures in case-control studies

Cao, Zhirong 12 1900 (has links)
Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins / Background: Case-control studies are very often used by epidemiologists to assess the impact of specific exposure(s) on a particular disease. These exposures may be represented by several time-dependent covariates and new methods are needed to accurately estimate their effects. Indeed, conventional logistic regression, which is the standard method to analyze case-control data, does not directly account for changes in covariate values over time. By contrast, survival analytic methods such as the Cox proportional hazards model can directly incorporate time-dependent covariates representing the individual entire exposure histories. However, it requires some careful manipulation of risk sets because of the over-sampling of cases, compared to controls, in case-control studies. As shown in a preliminary simulation study, the optimal definition of risk sets for the analysis of case-control data remains unclear and has to be investigated in the case of time-dependent variables. Objective: The overall objective is to propose and to investigate new versions of the Cox model for assessing the impact of time-dependent exposures in case-control studies, and to apply them to a real case-control dataset on lung cancer and smoking. Methods: I identified some potential new risk sets definitions (the weighted Cox model and the simple weighted Cox model), in which different weights were given to cases and controls, in order to reflect the proportions of cases and non cases in the source population. The properties of the estimates of the exposure effects that result from these new risk sets definitions were investigated through a simulation study. Various aspects of exposure were generated (intensity, duration, cumulative exposure value). The simulated case-control data were then analysed using different versions of Cox’s models corresponding to existing and new definitions of risk sets, as well as with standard logistic regression, for comparison purpose. The different regression models were then applied to real case-control data on lung cancer. The estimates of the effects of different smoking variables, obtained with the different methods, were compared to each other, as well as to simulation results. Results: The simulation results show that the estimates from the new proposed weighted Cox models, especially those from the weighted Cox model, are much less biased than the estimates from the existing Cox models that simply include or exclude future cases. In addition, the weighted Cox model was slightly, but systematically, less biased than logistic regression. The real life application shows some greater discrepancies between the estimates of the proposed Cox models and logistic regression, for some smoking time-dependent covariates. Conclusions: The results suggest that the new proposed weighted Cox models could be an interesting alternative to logistic regression for estimating the effects of time-dependent exposures in case-control studies.
6

Some Contributions to Inferential Issues of Censored Exponential Failure Data

Han, Donghoon 06 1900 (has links)
In this thesis, we investigate several inferential issues regarding the lifetime data from exponential distribution under different censoring schemes. For reasons of time constraint and cost reduction, censored sampling is commonly employed in practice, especially in reliability engineering. Among various censoring schemes, progressive Type-I censoring provides not only the practical advantage of known termination time but also greater flexibility to the experimenter in the design stage by allowing for the removal of test units at non-terminal time points. Hence, we first consider the inference for a progressively Type-I censored life-testing experiment with k uniformly spaced intervals. For small to moderate sample sizes, a practical modification is proposed to the censoring scheme in order to guarantee a feasible life-test under progressive Type-I censoring. Under this setup, we obtain the maximum likelihood estimator (MLE) of the unknown mean parameter and derive the exact sampling distribution of the MLE through the use of conditional moment generating function under the condition that the existence of the MLE is ensured. Using the exact distribution of the MLE as well as its asymptotic distribution and the parametric bootstrap method, we discuss the construction of confidence intervals for the mean parameter and their performance is then assessed through Monte Carlo simulations. Next, we consider a special class of accelerated life tests, known as step-stress tests in reliability testing. In a step-stress test, the stress levels increase discretely at pre-fixed time points and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Here, we consider a k-step-stress accelerated life testing experiment with an equal step duration τ. In particular, the case of progressively Type-I censored data with a single stress variable is investigated. For small to moderate sample sizes, we introduce another practical modification to the model for a feasible k-step-stress test under progressive censoring, and the optimal τ is searched using the modified model. Next, we seek the optimal τ under the condition that the step-stress test proceeds to the k-th stress level, and the efficiency of this conditional inference is compared to the preceding models. In all cases, censoring is allowed at each change stress point iτ, i = 1, 2, ... , k, and the problem of selecting the optimal Tis discussed using C-optimality, D-optimality, and A-optimality criteria. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. Thus, we also consider the simple stepstress models under Type-I and Type-II censoring situations when the lifetime distributions corresponding to the different risk factors are independently exponentially distributed. Under this setup, we derive the MLEs of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and then assess their performance through Monte Carlo simulations. / Thesis / Doctor of Philosophy (PhD)
7

Inflammation, médicaments anti-inflammatoires et risque de cancer de l’ovaire

Sarr, El Hadji Malick 11 1900 (has links)
Introduction : Le cancer de l’ovaire est le cancer gynécologique le plus fatal dans le monde et est associé à un fardeau économique considérable pour les systèmes de santé publique, les patients et leurs familles. Actuellement, la prévention de ce cancer passe par l’identification des facteurs de risque, dont l’inflammation. Le double rôle de l’inflammation dans la carcinogenèse (transformation néoplasique et stimulation de la croissance pour l’inflammation chronique, mais également l’inhibition de la croissance pour inflammation aiguë) a déjà été observé au 19ième siècle, par Rudolf Virchow et par l’allemand Bruns, respectivement. Plusieurs preuves suggèrent aussi que le cancer de l’ovaire pourrait être lié à l’inflammation chronique de l’épithélium ovarien d’où l’hypothèse selon laquelle les analgésiques ayant une action anti-inflammatoire comme les anti-inflammatoires non stéroïdiens (AINS) et l’acétaminophène pourraient prévenir le cancer de l’ovaire. Contrairement à l’inflammation chronique, un autre facteur intéressant qui pourrait jouer un rôle sur le cancer de l’ovaire par le biais d’une inflammation aiguë est la mastite puerpérale qui est la forme la plus courante de mastite. Cependant, la littérature existante, examinant l’usage des analgésiques (aspirine, AINS non aspirine et acétaminophène) et le risque de cancer ovarien, est incohérente avec des différences populationnelles (cohortes de naissance différentes) et méthodologiques : variations des définitions de l’utilisation régulière, des variables d’ajustement, mais aussi dans la prise en compte d’une possible causalité inverse. De plus, aucune étude n’a tenté d’évaluer l’association dépendante du temps entre l’utilisation régulière de ces médicaments et le risque de cancer ovarien. Pour la mastite puerpérale pendant l’allaitement, deux articles avaient évalué son association avec le risque de cancer épithélial de l’ovaire (CEO), mais avec des limites méthodologiques : violation de la positivité avec l’inclusion des femmes qui n’ont jamais eu de grossesse et sur-ajustement avec la durée d’allaitement qui est dans le chemin causal. Objectif : Cette thèse visait à atteindre deux objectifs généraux qui sont de fournir de nouvelles preuves concernant les associations entre : 1) l’utilisation régulière d’analgésiques et le risque de CEO ; 2) la mastite puerpérale et le risque de CEO. Méthode : Nous avons utilisé les données d’une étude cas-témoin populationnelle visant à documenter les facteurs pour la prévention du cancer de l’ovaire au Québec (Étude PROVAQ). Cette étude a été menée dans la grande région de Montréal, Canada, de mars 2011 à septembre 2016 avec 498 cas et 908 témoins. Notre approche méthodologique a été effectuée en trois étapes. Premièrement, nous avons utilisé l’ensemble des données de PROVAQ pour l’évaluation des associations entre l’utilisation régulière de types de médicaments analgésiques, et aussi selon l’indication et le risque de CEO. Deuxièmement, à partir des données de PROVAQ, nous avons évalué l’association dépendante du temps entre l’utilisation régulière d’un type de médicaments et le risque de CEO à l'aide d'un indice cumulatif pondéré flexible d'exposition dans des modèles de régression logistique conditionnelle. Enfin, nous avons évalué l’association entre la mastite puerpérale et le risque de CEO chez les femmes allaitantes (174 cas et 431 témoins). La régression logistique a été utilisée pour estimer ces associations. Résultats : Nos résultats suggèrent que l'utilisation régulière d’aspirine et d'AINS non aspirine était inversement associée au CEO avec des rapports de cotes (RC) ajustés de 0,81 (IC à 95 % : 0,57–1,12) et 0,74 (IC à 95 % : 0,54–1,00), respectivement. Pour l'utilisation régulière d'AINS non aspirine, les RCs ajustés des COX-2 non sélective et sélective étaient de 0,73 (IC à 95 % : 0,50–1,00) et de 0,83 (IC à 95 % : 0,48–1,40), respectivement. Des associations similaires ont été observées selon le niveau de durée cumulative à vie ou de quantité cumulative à vie de prises d’aspirine et d’AINS non aspirine. Cependant, les associations entre les types de médicaments analgésiques et le CEO peuvent différer selon leurs indications. Aucune association n’a été trouvée entre le moment de l'utilisation régulière d’un type de médicaments analgésiques au cours des 40 années précédant la date index et le CEO. Aucune association significative n’a été aussi trouvée entre la mastite puerpérale pendant l'allaitement et le CEO (RC = 1,15 ; IC à 95 % : 0,71–1,84). Conclusions : Cette thèse fournit des preuves qui appuient l'hypothèse selon laquelle l'utilisation régulière d'aspirine et d'AINS non aspirine sont inversement associées au CEO. Nos résultats suggèrent également l'importance de considérer les indications d'utilisation lors de l'examen des relations entre les types de médicaments analgésiques et le CEO. Elle n’a pas trouvé d'association entre le moment de l'utilisation régulière d’analgésiques et le CEO mais aussi entre la mastite puerpérale pendant l’allaitement et le CEO. Cependant, notre étude a manqué de puissance. / Introduction: Ovarian cancer is the most fatal gynecological cancer in the world and is associated with a considerable economic burden for public health systems, patients and their families. Currently, the prevention of this cancer requires the identification of risk factors including inflammation. The dual role of inflammation in carcinogenesis (neoplastic transformation and stimulation of cancer growth for chronic inflammation, but also inhibition of cancer growth for acute inflammation) has already been observed in the 19th century, by Rudolf Virchow and by the German Bruns, respectively. Several pieces of evidence also suggest that ovarian cancer could be linked to chronic inflammation of the ovarian epithelium, hence the hypothesis that analgesics with an anti-inflammatory action such as nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen could prevent ovarian cancer. Unlike chronic inflammation, another interesting factor that could play a role in ovarian cancer through acute inflammation is puerperal mastitis which is the most common form of mastitis. However, the existing literature examining the use of analgesics (aspirin, non-aspirin NSAIDs and acetaminophen) and the risk of ovarian cancer is inconsistent with population (different birth cohorts) and methodological differences: variations in definitions of regular use, adjustment variables but also in taking into account a possible reverse causality. In addition, no studies have attempted to assess the time-dependent association between regular use of these drugs and the risk of ovarian cancer. For puerperal mastitis during breastfeeding, two articles had assessed its association with the risk of epithelial ovarian cancer (EOC) but with methodological limitations: violation of positivity with the inclusion of women who never had of pregnancy and over-adjustment with the duration of breastfeeding which is in the causal path. Objective: This thesis aimed to achieve two general objectives which are to provide new evidence regarding the associations between: 1) the regular use of analgesics and the risk of EOC; 2) puerperal mastitis and the risk of EOC. Method: We used data from a population-based case-control study aimed at documenting factors for the prevention of ovarian cancer in Quebec (PROVAQ study). This study was conducted in the greater Montreal area, Canada, from March 2011 to September 2016 with 498 cases and 908 controls. Our methodological approach was carried out in three stages. First, we used the PROVAQ dataset to assess associations between regular use of analgesic drugs types, and also by indication and EOC risk. Second, from PROVAQ data, we evaluated the time-dependent association between regular use of a type of medication and the risk of EOC using a flexible weighted cumulative index of exposure in conditional logistic regression models. Finally, we evaluated the association between puerperal mastitis and the risk of EOC in lactating women (174 cases and 431 controls). Unconditional logistic regression was used to estimate associations between regular use of analgesic drugs types, puerperal mastitis during breastfeeding and EOC risk. Results: Our results suggest that regular use of aspirin and non-aspirin NSAIDs were inversely associated with EOC with adjusted ORs of 0.81 (95% CI: 0.57–1.12) and 0.74 (95% CI: 0.54–1.00), respectively. For regular non-aspirin NSAID use, the adjusted ORs for non-selective and selective COX-2 were 0.73 (95% CI: 0.50–1.00) and 0.83 (95% CI: 0.48–1.40), respectively. Similar associations were observed according to the level of lifetime cumulative duration or lifetime cumulative quantity of aspirin and non-aspirin NSAID. However, the associations between analgesic drug types and EOC may differ according to their indications. No association was found between the time of regular use of any type of analgesic medication in the 40 years prior to the index date and EOC. No significant association was also found between puerperal mastitis during breastfeeding and EOC (OR = 1.15; 95% CI: 0.71–1.84). Conclusions: This thesis provides evidence that supports the hypothesis that regular use of aspirin and non-aspirin NSAIDs are inversely associated with EOC. Our results also suggest the importance of considering indications for use when examining relationships between analgesic drug types and EOC. We found no association between the timing of regular analgesic use and EOC but also between puerperal mastitis during breastfeeding and EOC. However, our study was underpowered.

Page generated in 0.0605 seconds