• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 65
  • 28
  • 25
  • 24
  • 23
  • 21
  • 14
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desarrollo de un método de valoración de clientes en una empresa del sector automotriz

Osses Godoy, Alex Alfredo January 2015 (has links)
Ingeniero Civil Industrial / En el mundo competitivo de hoy, el conocimiento de los clientes puede transformarse en una ventaja para las empresas. Lo anterior se debe a que cada individuo es diferente y pueden presentar distintos comportamientos, existiendo algunos que son más rentables que otros, por lo que detectarlos y enfocarse en los clientes correctos representa potenciales ganancias a futuro. En base a lo anterior, en este proyecto se propone el desarrollo de una metodología de valoración de clientes de una importante empresa del sector automotriz, específicamente en el subsector de camiones medianos de una de las marcas que representa. El método propuesto tiene como objetivo apoyar a las áreas comerciales a focalizar la retención y fidelización de los clientes más valiosos mediante la generación de recomendaciones de distintos tipos de acciones de marketing a enfocar en diferentes grupos de clientes para así mejorar su gestión. Lo anterior implica la estimación del valor futuro de los clientes, para lo cual se utiliza la métrica de CLV (Customer Lifetime Value). Para estimarla, se proponen 2 modelos ampliamente utilizados en distintas industrias para la estimación del número de transacciones: Uno probabilístico (BG-NBD) y uno econométrico (Logit-Poisson-Markov). Por otro lado, para la estimación de los montos se utiliza el modelo probabilístico Gamma-Gamma. Las métricas de ajuste utilizadas para validar los modelos indican que el modelo econométrico es el que presenta el mejor desempeño para la estimación del número de transacciones, el cual se utiliza en conjunto con el modelo probabilístico que estima los montos para así proyectar el valor futuro de los clientes. Utilizando el valor histórico generado por los clientes y su valor proyectado para el año actual y para un plazo de 5 años (utilizando el modelo desarrollado) se propone una agrupación de clientes en base a estas 3 variables. A partir de la agrupación propuesta se realizan recomendaciones de acciones de marketing a los distintos grupos generados, logrando así apoyar a las áreas comerciales a la focalización de los esfuerzos a realizar con la cartera de clientes. Los clientes más valiosos para el plazo de 5 años utilizados resultan ser los clientes tipo empresa que se desempeñan en el rubro "R2" y que además de tener vehículos medianos poseen vehículos livianos y/o pesados dentro de la misma marca. Estos representan un valor promedio de $ 101.522.185 en el plazo señalado. El modelo de valoración y su utilización propuesta significan el punto de partida para la empresa en la búsqueda de un enfoque relacional, que busca comprender, mejorar y aumentar las relaciones que posee actualmente con su cartera de clientes.
12

Valor do cliente, inadimplência e assimetria de fluxo de caixa

Ongaratto, Samuel 20 August 2010 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-04-08T12:07:56Z No. of bitstreams: 1 Samuel Ongaratto.pdf: 1337304 bytes, checksum: 14198512c9cbcad30e81483b17403288 (MD5) / Made available in DSpace on 2015-04-08T12:07:56Z (GMT). No. of bitstreams: 1 Samuel Ongaratto.pdf: 1337304 bytes, checksum: 14198512c9cbcad30e81483b17403288 (MD5) Previous issue date: 2010-08-20 / Nenhuma / O objetivo deste estudo é ajudar as empresas na tomada de decisão com relação à base de clientes e ajuste de suas promoções de mercado num contexto de risco de crédito comercial. O resultado da pesquisa é a proposição de um novo modelo. Como contribuições teóricas, pode ser citado o desenvolvimento de um modelo de risco de crédito capaz de estimar um risco de inadimplência para cada pagamento efetuado por um cliente. Isso difere dos modelos encontrados na literatura, que estimam apenas um risco para cada cliente. Outra contribuição é o desenvolvimento de um modelo baseado na métrica de Customer Lifetime Value com componentes inéditos (assimetria entre prazos de pagamento e recebimento e risco de crédito). Esta pesquisa é dividida em três fases distintas: uma fase exploratória, resultado de uma pesquisa realizada na literatura em busca de conceitos e elementos alinhados ao objetivo; a segunda é a proposição do método e do modelo propriamente ditos, e a terceira e última fase foi a aplicação do modelo a um estudo de campo, o qual utilizou dados de 14.259 faturas e 229 clientes. Os dados são de dezembro de 2007 a agosto de 2009. O modelo de risco de crédito integrado ao modelo proposto classifica as faturas pagas com 75,52% de assertividade média. Os resultados do estudo de campo ajudaram a empresa estudada a realizar uma série de mudanças na sua base de clientes, resultando com essas medidas num ganho estimado de mais de R$ 2,5 milhões para 2010. / The objective of this research is to help companies in decision making regarding the customer base and adjust their marketing promotions in the context of commercial credit risk. The result of this research is to propose a new model. As theoretical contributions can be mentioned the development of a model of credit risk can estimate a default risk for each payment made by a client. This differs from the other models in the literature that estimate only one risk for each client. Another contribution is the development of a model based on metrics of Customer Lifetime Value with components unpublished (asymmetry between receiving and payment terms and credit risk). This research is divided into three distinct phases: an exploratory phase, where it performed a literature review in search of concepts and elements aligned to the goal. The second phase is the proposition of the method and the model itself. The third and final phase was the implementation of the model to a field study. The field study used data from 14 259 bills and 229 customers. Data are from December 2007 to August 2009. The model of credit risk built into the proposed model classifies invoices paid on average 75.52% of assertiveness. The results of the field helped the company studied conducting a series of changes in its customer base. Changes made resulting in an estimated gain of more than R$ 2.5 million in 2010.
13

Gestão de clientes : um framework para integrar as perspectivas do portfólio de clientes e do cliente individual / Customer management : a framework for integrating customer portfolio and customer perspectives

Silveira, Cleo Schmitt January 2016 (has links)
A gestão de clientes é um processo que envolve a tomada de decisões estratégicas, que influenciam a composição do portfólio de clientes da companhia, e operacionais, que afetam o relacionamento dos clientes com a empresa no dia a dia. O framework sugerido nesta tese propicia a integração dessas duas perspectivas, permitindo aos gestores alocarem melhor os recursos de marketing, por possibilitarem (a) o incremento da eficiência da carteira de clientes, a partir da sua otimização, e (b) a identificação dos clientes mais propensos a gerarem lucros futuros, com base na modelagem de customer lifetime value (CLV) desenvolvida. A abordagem de otimização do portfólio de clientes foi elaborada para auxiliar os gestores a definirem os segmentos que devem ser alvo dos investimentos de marketing e tem como objetivo indicar a composição da carteira de clientes que proporcionará a rentabilidade, a diversificação do risco e a lucratividade desejadas pelos acionistas. A abordagem sugerida é uma adaptação para o marketing da teoria financeira do portfólio. Foram incluídas restrições específicas para a área de gestão de clientes que asseguram a exequibilidade dos portfólios recomendados, tanto em relação à necessidade de aquisição de clientes ou de redução da participação dos segmentos na carteira, quanto em relação à manutenção da lucratividade da empresa. Ademais, foram incorporadas opções de estimação do retorno, tais como a inclusão da tendência à série com base na modelagem SUR, além de serem avaliadas a utilização de duas proxies para o risco, a variância e o Conditional Value at Risk. De acordo com o framework de gestão de clientes proposto, a implementação das decisões estratégicas é viabilizada a partir da integração da análise dos resultados obtidos pela otimização com a avaliação proporcionada pelo modelo de CLV sugerido. Este, além de englobar a evolução do comportamento do cliente ao longo do relacionamento da empresa, considera o retorno e a matriz de probabilidade de troca de segmento de maneira individualizada. A heterogeneidade da matriz de Markov foi alcançada a partir da combinação convexa da matriz de transição geral com a matriz personalizada de cada cliente, possibilitando, assim, a priorização de clientes pertencentes a um mesmo segmento. O framework sugerido foi aplicado na base de clientes de uma grande empresa que atua nacionalmente na indústria de serviços financeiros. Após a constatação de que os segmentos podem gerar diferentes retornos e representar distintos níveis de risco para a companhia, foi feita a comparação dos resultados dos portfólios recomendados com o realizado. Os portfólios sugeridos desempenharam melhor de maneira consistente em termos de lucratividade e de eficiência, medida a partir do sharpe ratio. Em relação ao modelo de CLV, os resultados foram comparados com os obtidos a partir do modelo de Pfeifer & Carraway (2000), utilizado como ponto de partida para o seu desenvolvimento. As modificações incorporadas, além de possibilitarem a individualização por cliente, aumentaram a precisão da previsão dos valores individuais e a qualidade do ordenamento, mantendo a capacidade de avaliação do valor da base. Para resumir, foi proposto um framework de gestão de clientes que inclui a avaliação do risco, possibilitando aos gestores uma visão holística do negócio e particular de cada cliente. / Customer management is a process that involves strategic decision-making, which influence the composition of the customer portfolio, and operational decision making, which affect the relationship of each customer with the company. The proposed framework provides the integration of the strategic and operational perspectives, empowering managers to better allocate marketing resources as it enables (a) the increase of the efficiency of the customer portfolio, through its optimization, and (b) the identification of the customers that are more likely to bring profit in the future, through the customer lifetime value (CLV) model developed. The customer portfolio optimization method was built to help managers to define the customer segments that should be the target of their marketing investments. Its purpose is to indicate the customer portfolio composition that will provide the return, profitability and risk diversification desired by shareholders. The suggested approach is an adaptation to marketing of financial portfolio theory. In this way, customer management specific constrains were included to ensure the applicability of the recommended portfolios in terms of either the necessity of acquiring new customers or reducing the importance of a given segment in the portfolio as well as in terms of maintaining the company’s profitability. Furthermore, options of estimating return were incorporated such as the inclusion of the trend in the time series based SUR modeling as well as the optimizations were evaluated considering two proxies for risk, variance and Conditional Value at Risk. According to the proposed framework, the implementation of the strategic decisions concerning the changes needed in the customer portfolio become possible through the integration of the results of the optimization with the estimation of the value of each customer provided by the CLV model developed. In this model, besides accounting for the evolution of the customer behavior throughout the duration of his relationship with the company, we also consider, for each customer, his individual return and his individual transition matrix. The heterogeneity of the Markov matrix was reached with a convex combination of the general transition matrix and the personalized matrix of each customer. It, therefore, enables managers to priorize customers of the same segment. The suggested framework was applied to the customer database of a large national company from the financial services industry. Once evidenced that the customer segments can generate different returns and can have different levels of risk for the company, we compared the results of the recommended with the current. The portfolios suggested by the optimization performed consistently better in terms of profitability and efficiency, measured through sharpe ratio. Concerning the CLV model developed, we compared the results with Pfeifer & Carraway (2000) model, which was used as the start point for our model. The improvements implemented not only allowed the estimation of CLV at the individual level, but also increased the precision of the predictions for the customer lifetime values and for the customer ranking, maintaining the quality of the customer equity forecast. To sum up, our proposed framework which includes risk assessment enables marketing managers to have a holistic vision of their customer portfolio and to drilldown into a particular vision of each customer.
14

Enhancing the human sensemaking process with the use of social network analysis and machine learning techniques

Marshan, Alaa January 2018 (has links)
Sensemaking is often associated with processing large or complex amount of data obtained from diverse and distributed sources. Sensemaking enables leaders to have a better grasp of what the data represents and what insights they can get from it. Thus, sensemaking is considered extremely important in mature markets where the competition is fierce. To-date, the research base on sensemaking has not moved far from the conceptual realm, however. In response, this research provides a conceptual framework that explains the core processes of sensemaking - noticing, interpretation and action - and examines how emerging technologies such as Social Network Analysis (SNA) and Machine Learning (ML) techniques help to enhance the human sensemaking process in generating valuable insights during data analysis. Design Science Research (DSR) is adopted as a research methodology in the context of financial transactional data analysis, aiming to make sense of the data while exploring conceptions of customer value for a mainstream commercial bank alongside the perceived need for banking products. Three analytical models are introduced, examining Connected Customer Lifetime Value (CCLV), Network Relationship Equity (NRE) and product purchasing frequency based on customer 'personas'. The former models employ SNA techniques in providing novelty, the latter combines the outcomes of SNA with ML clustering algorithms to provide a base on which product holdings and purchase frequency analysis are overlaid - providing a novel form of recommendation. Ongoing evaluation of the developed models is used to explore the nuances of the sensemaking process and the ability of such models to support that process (in the given domain).
15

Customer engagement in a multichannel context

Jiao, Wenyu 11 December 2018 (has links)
Cette thèse traite de la compréhension de l’engagement client dans un contexte multicanal. Le flot de littérature sur le marketing multicanal présente plusieurs lacunes théoriques et managériales, telles que les impacts dynamiques de l’adoption multicanal sur la valeur client, la quantification de la rentabilité des campagnes marketing, le comportement multicanal à travers les marques, etc. (Neslin et al. 2014; Neslin and Shankar 2009). Cette thèse a pour but d’éclairer les impacts dynamiques de l’engagement client sur la valeur client et les revenus de l’entreprise dans un contexte multicanal. Le Chapitre 1 aborde les « Impacts dynamiques du canal d’acquisition et de l’adoption multicanal sur la valeur vie client ». Au Chapitre 2, « antécédents et conséquences de l’utilisation des codes promotionnels », nous étudions le processus d’utilisation des codes promotionnels et la rentabilité de telles campagnes. Au Chapitre 3, « Modéliser les impacts de l’achat multicanal sur le choix de marque », nous étudions la question du comportement en termes de choix d’une marque dans un environnement multicanal. Dans l’ensemble, cette thèse étudie divers engagements client et leurs effets sur la valeur client et les revenus de l’entreprise. Du point de vue théorique, c’est une contribution aux publications sur le marketing dans les domaines du marketing multicanal, de la valeur vie client, des promotions et des choix de marques. Elle propose une approche exhaustive de l’engagement client et de la valeur client dans un contexte multicanal. Dans une optique de gestion, cette étude propose aux entreprises des méthodologies novatrices pour gérer leur clientèle au niveau individuel, ainsi que de nouveaux modèles pour évaluer les activités de marketing multicanal / This dissertation aims to investigate the dynamic impacts of customer engagement on customer value and firm revenues in a multichannel context. I address this research question in three chapters. In chapter 1, we propose a hidden Markov model to understand the dynamic effects of acquisition channel and multichannel adoption on the customer-firm relationship and to estimate the customer lifetime value. The results show that multichannel customers acquired from offline channels exhibit higher short-term value than multichannel customers acquired from online channels. In contrast, multichannel customers acquired from online channels are more likely to stay in a higher value state in the long run. In the long run, multichannel customers acquired from offline channels are more valuable than other customers. Chapter 2 focuses on promo code redemption behaviors. We conduct the research using a field experiment. We identify the determinants of opening, clicking the email and the final redemption behavior using a simultaneous multiple equation probit model. In our setting, we find that 11% of the profitability of the promo code campaign stems from eligible purchases without redemption. By targeting those customer segments that are more likely to make eligible purchases without redemption, the average profitability increases. In Chapter 3, we investigate how multichannel behavior impacts brand choice in a grocery setting. Our research develops a hierarchal Bayesian brand choice decision model to understand how multichannel adoption impacts brand choice decision, brand size-of-wallet, and brand share-of-wallet. Our results show that brand choice probability increases in general after consumers become multichannel. We also find that consumers increase both the size-of-wallet and share-of-wallet for the brand which they first purchase online, yet do not necessarily decrease the share-of-wallet for other brands.
16

Med kunden i fokus? : En studie av hur kundklubbar påverkar verksamheten inom svenska företag

Elinder, Zacharias, Berglöf, Jonas January 2009 (has links)
<p>Varje dag använder sig miljontals svenskar av någon form av medlems- eller kundklubbskort när de handlar i butik, kontaktar en kundtjäst eller loggar in på ett företags hemsida. Motiven till detta kan förstås vara olika - det kan vara smidigt, lönsamt eller nödvändigt för att överhuvudtaget få den hjälp och service man önskar. För företagen är denna registrering å andra sidan ett effektivt sätt att samla information om sina kunder som ett led i deras lojalitetsskapande arbete mot kund. Tidigare, internationella studier av CRM visar dock på att företagen inte utnyttjar den information de har om kunder för att verkligen styra verksamheten.</p><p>Syftet med denna uppsats är att studera om detta är ett aktuellt problem även bland svenska företag genom en enkätundersökning riktad till CRM- och kundklubbsansvariga vid svenska företag. Denna undersökning har utarbetats utifrån Cuthbertsons tre kriterier för att avgöra om en organisation är kundorienterade eller ej.</p><p>Resultat visar att de flesta företag som deltog i studien inte använder informationen man samlar in från kunderna i någon större utsträckning. Däremot visar resulataten att företag med äldre kundklubbar samt med höga medlemsantal generellt är bättre på att sprida och använda den kunskap som kundklubben samlar in. Skälen till att kundinformation inte används i större utsträckning beror enligt vår analys på frånvaron av fungerande intern infrastrauktur för att sprida inhämtad kunddata, kundklubben har för få medlemmar och låg ålder vilket påverkar dess interna status samt att kundklubben främst betraktas som ett register för riktad marknadsföring snarare än som ett redskap för att styra företagens verksamhet i stort.</p>
17

Med kunden i fokus? : En studie av hur kundklubbar påverkar verksamheten inom svenska företag

Elinder, Zacharias, Berglöf, Jonas January 2009 (has links)
Varje dag använder sig miljontals svenskar av någon form av medlems- eller kundklubbskort när de handlar i butik, kontaktar en kundtjäst eller loggar in på ett företags hemsida. Motiven till detta kan förstås vara olika - det kan vara smidigt, lönsamt eller nödvändigt för att överhuvudtaget få den hjälp och service man önskar. För företagen är denna registrering å andra sidan ett effektivt sätt att samla information om sina kunder som ett led i deras lojalitetsskapande arbete mot kund. Tidigare, internationella studier av CRM visar dock på att företagen inte utnyttjar den information de har om kunder för att verkligen styra verksamheten. Syftet med denna uppsats är att studera om detta är ett aktuellt problem även bland svenska företag genom en enkätundersökning riktad till CRM- och kundklubbsansvariga vid svenska företag. Denna undersökning har utarbetats utifrån Cuthbertsons tre kriterier för att avgöra om en organisation är kundorienterade eller ej. Resultat visar att de flesta företag som deltog i studien inte använder informationen man samlar in från kunderna i någon större utsträckning. Däremot visar resulataten att företag med äldre kundklubbar samt med höga medlemsantal generellt är bättre på att sprida och använda den kunskap som kundklubben samlar in. Skälen till att kundinformation inte används i större utsträckning beror enligt vår analys på frånvaron av fungerande intern infrastrauktur för att sprida inhämtad kunddata, kundklubben har för få medlemmar och låg ålder vilket påverkar dess interna status samt att kundklubben främst betraktas som ett register för riktad marknadsföring snarare än som ett redskap för att styra företagens verksamhet i stort.
18

Information Diffusion and Influence Propagation on Social Networks with Marketing Applications

Cheng, Jiesi January 2013 (has links)
Web and mobile technologies have had such profound impact that we have witnessed significant evolutionary changes in our social, economic and cultural activities. In recent years, online social networking sites such as Twitter, Facebook, Google+, and LinkedIn have gained immense popularity. Such social networks have led to an enormous explosion of network-centric data in a wide variety scenarios, posing unprecedented analytical and computational challenges to MIS researchers. At the same time, the availability of such data offers major research opportunities in various social computing and analytics areas to tackle interesting questions such as: - From a business and marketing perspective, how to mine the novel datasets of online user activities, interpersonal communications and interactions, for developing more successful marketing strategies? - From a system development perspective, how to incorporate massive amounts of available data to assist online users to find relevant, efficient, and timely information? In this dissertation, I explored these research opportunities by studying multiple analytics problems arose from the design and use of social networking services. The first two chapters (Chapter 2 and 3) are intended to study how social network can help to derive a better estimation of customer lifetime value (CLV), in the social gaming context. In Chapter 2, I first conducted an empirical study to demonstrate that friends' activities can serve as significant indicators of a player's CLV. Based on this observation, I proposed a perceptron-based online CLV prediction model considering both individual and friendship information. Preliminary results have shown that the model can be effectively used in online CLV prediction, by evaluating against other commonly-used benchmark methods. In Chapter 3, I further extended the metric of traditional CLV, by incorporating the personal influences on other customers' purchase as an integral part of the lifetime value. The proposed metric was illustrated and tested on seven social games of different genres. The results showed that the new metric can help marketing managers to achieve more successful marketing decisions in user acquisition, user retention, and cross promotion. Chapter 4 is devoted to the design of a recommendation system for micro-blogging. I studied the information diffusion pattern in a micro-blogging site (Twitter.com) and proposed diffusion-based metrics to assess the quality of micro-blogs, and leverage the new metric to implement a novel recommendation framework to help micro-blogging users to efficiently identify quality news feeds. Chapter 5 concludes this dissertation by highlighting major research contributions and future directions.
19

O Customer equity e a capitalização de mercado no setor financeiro

Lima, Amanda Ferreira de January 2012 (has links)
Recentes pesquisas no campo do Marketing têm apresentado resultados demonstrando que estratégias baseadas em elevar o Valor Vitalício dos Clientes (CLV) podem ter um impacto positivo no valor ao acionista. Em consequência disso, o Customer Equity, equivalente à soma dos CLVs dos clientes, também chamado de valor da base de clientes de uma empresa, vem se estabelecendo como métrica capaz de comprovar o impacto do Marketing no valor das empresas. A lógica que sustenta esta relação está no fato de que o valor das ações está baseado na expectativa de fluxo de caixa futuro, que provêm da base de clientes. O cálculo do CLV dos clientes também apresenta uma importante utilidade gerencial como balizador da correta alocação de recursos de Marketing, indicando os clientes mais lucrativos no longo prazo. A partir do modelo de Kumar e Shah (2009), esta dissertação realiza o cálculo do Customer Equity de uma empresa do setor financeiro a partir de informações individuais das transações dos clientes. O CLV é calculado individualmente, permitindo identificar o perfil dos clientes mais rentáveis no longo-prazo. Também é testada a relação entre Customer Equity e capitalização de mercado ao longo de 31 meses, sem comprovação de associação significativa entre as variáveis, mas havendo um sinal de relação positiva entre elas. Os resultados são discutidos, e, por fim, são analisadas implicações gerenciais e sugestões de pesquisas futuras. / Recent research in the field of Marketing have presented results demonstrating that strategies based on raising the Customer Lifetime Value (CLV) can have a positive impact on shareholder value. As a result, the Customer Equity, the sum of the customer’s CLVs, also called a customer’s base value of a company, has established itself as a metric able to demonstrate the impact of Marketing on the value of companies. The logic that underlies this relationship is in the fact that the value of the shares is based on expected future cash flows that stem from the customer base. Calculating customer’s CLV also has an important management utility of indicate the proper allocation of Marketing resources, identifying the most profitable customers in the long run. From the model of Kumar and Shah (2009), this paper performs the calculation of the Customer Equity of a financial institution from individual details of customer’s transactions. The CLV is calculated individually, allowing to identify the profile of the most profitable customers in the long run. Is also tested the relationship between Customer Equity and market capitalization over 31 months, without being proven a significant association between variables, but having a sign of a positive relationship between them. The results are discussed, and finally, managerial implications and suggestions for future research are analyzed.
20

Gestão de clientes : um framework para integrar as perspectivas do portfólio de clientes e do cliente individual / Customer management : a framework for integrating customer portfolio and customer perspectives

Silveira, Cleo Schmitt January 2016 (has links)
A gestão de clientes é um processo que envolve a tomada de decisões estratégicas, que influenciam a composição do portfólio de clientes da companhia, e operacionais, que afetam o relacionamento dos clientes com a empresa no dia a dia. O framework sugerido nesta tese propicia a integração dessas duas perspectivas, permitindo aos gestores alocarem melhor os recursos de marketing, por possibilitarem (a) o incremento da eficiência da carteira de clientes, a partir da sua otimização, e (b) a identificação dos clientes mais propensos a gerarem lucros futuros, com base na modelagem de customer lifetime value (CLV) desenvolvida. A abordagem de otimização do portfólio de clientes foi elaborada para auxiliar os gestores a definirem os segmentos que devem ser alvo dos investimentos de marketing e tem como objetivo indicar a composição da carteira de clientes que proporcionará a rentabilidade, a diversificação do risco e a lucratividade desejadas pelos acionistas. A abordagem sugerida é uma adaptação para o marketing da teoria financeira do portfólio. Foram incluídas restrições específicas para a área de gestão de clientes que asseguram a exequibilidade dos portfólios recomendados, tanto em relação à necessidade de aquisição de clientes ou de redução da participação dos segmentos na carteira, quanto em relação à manutenção da lucratividade da empresa. Ademais, foram incorporadas opções de estimação do retorno, tais como a inclusão da tendência à série com base na modelagem SUR, além de serem avaliadas a utilização de duas proxies para o risco, a variância e o Conditional Value at Risk. De acordo com o framework de gestão de clientes proposto, a implementação das decisões estratégicas é viabilizada a partir da integração da análise dos resultados obtidos pela otimização com a avaliação proporcionada pelo modelo de CLV sugerido. Este, além de englobar a evolução do comportamento do cliente ao longo do relacionamento da empresa, considera o retorno e a matriz de probabilidade de troca de segmento de maneira individualizada. A heterogeneidade da matriz de Markov foi alcançada a partir da combinação convexa da matriz de transição geral com a matriz personalizada de cada cliente, possibilitando, assim, a priorização de clientes pertencentes a um mesmo segmento. O framework sugerido foi aplicado na base de clientes de uma grande empresa que atua nacionalmente na indústria de serviços financeiros. Após a constatação de que os segmentos podem gerar diferentes retornos e representar distintos níveis de risco para a companhia, foi feita a comparação dos resultados dos portfólios recomendados com o realizado. Os portfólios sugeridos desempenharam melhor de maneira consistente em termos de lucratividade e de eficiência, medida a partir do sharpe ratio. Em relação ao modelo de CLV, os resultados foram comparados com os obtidos a partir do modelo de Pfeifer & Carraway (2000), utilizado como ponto de partida para o seu desenvolvimento. As modificações incorporadas, além de possibilitarem a individualização por cliente, aumentaram a precisão da previsão dos valores individuais e a qualidade do ordenamento, mantendo a capacidade de avaliação do valor da base. Para resumir, foi proposto um framework de gestão de clientes que inclui a avaliação do risco, possibilitando aos gestores uma visão holística do negócio e particular de cada cliente. / Customer management is a process that involves strategic decision-making, which influence the composition of the customer portfolio, and operational decision making, which affect the relationship of each customer with the company. The proposed framework provides the integration of the strategic and operational perspectives, empowering managers to better allocate marketing resources as it enables (a) the increase of the efficiency of the customer portfolio, through its optimization, and (b) the identification of the customers that are more likely to bring profit in the future, through the customer lifetime value (CLV) model developed. The customer portfolio optimization method was built to help managers to define the customer segments that should be the target of their marketing investments. Its purpose is to indicate the customer portfolio composition that will provide the return, profitability and risk diversification desired by shareholders. The suggested approach is an adaptation to marketing of financial portfolio theory. In this way, customer management specific constrains were included to ensure the applicability of the recommended portfolios in terms of either the necessity of acquiring new customers or reducing the importance of a given segment in the portfolio as well as in terms of maintaining the company’s profitability. Furthermore, options of estimating return were incorporated such as the inclusion of the trend in the time series based SUR modeling as well as the optimizations were evaluated considering two proxies for risk, variance and Conditional Value at Risk. According to the proposed framework, the implementation of the strategic decisions concerning the changes needed in the customer portfolio become possible through the integration of the results of the optimization with the estimation of the value of each customer provided by the CLV model developed. In this model, besides accounting for the evolution of the customer behavior throughout the duration of his relationship with the company, we also consider, for each customer, his individual return and his individual transition matrix. The heterogeneity of the Markov matrix was reached with a convex combination of the general transition matrix and the personalized matrix of each customer. It, therefore, enables managers to priorize customers of the same segment. The suggested framework was applied to the customer database of a large national company from the financial services industry. Once evidenced that the customer segments can generate different returns and can have different levels of risk for the company, we compared the results of the recommended with the current. The portfolios suggested by the optimization performed consistently better in terms of profitability and efficiency, measured through sharpe ratio. Concerning the CLV model developed, we compared the results with Pfeifer & Carraway (2000) model, which was used as the start point for our model. The improvements implemented not only allowed the estimation of CLV at the individual level, but also increased the precision of the predictions for the customer lifetime values and for the customer ranking, maintaining the quality of the customer equity forecast. To sum up, our proposed framework which includes risk assessment enables marketing managers to have a holistic vision of their customer portfolio and to drilldown into a particular vision of each customer.

Page generated in 0.0646 seconds