Spelling suggestions: "subject:"cutting planes"" "subject:"butting planes""
21 |
Two-Echelon Supply Chain Design for Spare Parts with Time ConstraintsRiaz, Muhammad Waqas January 2013 (has links)
We consider a single-part, two-echelon supply chain problem for spare parts. The network consists of a single manufacturing plant, a set of service centers (SCs) and a set of customers. Both echelons keep spare parts using the base-stock replenishment policy. The plant behaves as an M/M/1 queueing system and has limited production and storage capacity. Demand faced by each SC follows an independent Poisson process. The problem is to determine optimal location-allocation and optimal base-stock levels at both echelons while satisfying the target service levels and customer preferences of SCs. We develop a mixed integer non-linear programming model and use cutting-plane method to optimize the inventory-location decisions. We present an exact solution procedure for the inventory stocking problem and demonstrate the limitations of using traditional inventory models like METRIC-like and Approximate in case of high utilization rates. We show the effectiveness of our proposed cutting-plane algorithm and provide important managerial insights for spare parts management.
|
22 |
Two-Echelon Supply Chain Design for Spare Parts with Time ConstraintsRiaz, Muhammad Waqas January 2013 (has links)
We consider a single-part, two-echelon supply chain problem for spare parts. The network consists of a single manufacturing plant, a set of service centers (SCs) and a set of customers. Both echelons keep spare parts using the base-stock replenishment policy. The plant behaves as an M/M/1 queueing system and has limited production and storage capacity. Demand faced by each SC follows an independent Poisson process. The problem is to determine optimal location-allocation and optimal base-stock levels at both echelons while satisfying the target service levels and customer preferences of SCs. We develop a mixed integer non-linear programming model and use cutting-plane method to optimize the inventory-location decisions. We present an exact solution procedure for the inventory stocking problem and demonstrate the limitations of using traditional inventory models like METRIC-like and Approximate in case of high utilization rates. We show the effectiveness of our proposed cutting-plane algorithm and provide important managerial insights for spare parts management.
|
23 |
[en] AN ALGORITHM WITH COLUMN AND CUT GENERATION FOR THE CAPACITATED VEHICLE ROUTING PROBLEM / [pt] UM ALGORITMO DE GERAÇÃO DE COLUNAS E CORTES PARA O PROBLEMA DE ROTEAMENTO DE VEÍCULOSMARCELO LADEIRA REIS 15 June 2005 (has links)
[pt] O problema de Roteamento de Veículos com restrição de
capacidade
(CVRP) é um dos problemas mais estudados em Otimização
Combinatória.
Sendo uma generalização imediata do conhecido problema
do
Caixeiro Viajante,
o CVRP tem atraído a atenção dos pesquisadores mais
proeminentes
da área desde os anos 60. Um dos algoritmos mais
importantes para a sua
resolução foi proposto no início dos anos 80 quando um
algoritmo utilizando
uma relaxação Lagrangeana particularmente adequada
provou
ser bastante
superior aos algoritmos contemporâneos. Este algoritmo
sugeriu a utilização
de técnicas de geração de colunas que, nos anos
seguintes
até o início dos
anos 90, assumiram o rótulo de melhor algoritmo para o
CVRP. Finalmente,
em meados dos anos 90, algoritmos de planos de corte
apresentaram resultados
que convenceram a comunidade de que esta deveria ser a
abordagem
para resolver os problemas mais difíceis de CVRP. Esta
dissertação apresenta
uma revisão deste algoritmos anteriores e propõe um
formulação que
permite reunir o melhor deles. O algortimo resultante,
que
pode ser rotulado
como de branch-and-cut-and-price, trabalha com um número
exponencial
de variáveis e restrições que definem um espaço relaxado
de soluções que
corresponde à interseção dos espaços de solução
relaxados
utilizados pelos
algoritmos anteriores. Esta dissertação também descreve
um
implementação
especial do algoritmo de programação dinâmica para
resolução do problema
de geração de colunas. Estratégias para fazer um
branching
robusto também
são discutidas. Tudo isso permite construir um algoritmo
que é capaz de ter
uma boa performance quando aplicado a diferentes classes
de instâncias. A
experiência computacional mostrou que a abordagem
proposta
obtém limites
inferiores consistentemente melhores que os dos
algoritmos
anteriores.
Mais ainda, permite resolver em tempo hábil diferentes
tipos de instâncias
de até 135 vértices, incluindo 18 que foram resolvidas
pela primeira vez. / [en] The Capacitated Vehicle Routing problem (CVRP) has been
one of the most
studied problems in the field of Combinatorial
Optimization. A straight
forward generalization of the popular Travelling
Salesperson problem, the
CVRP has drawn attention of the most prominent researchers
since the
early 60`s. One of the most important algorithms appeared
in the early
80`s when a suitable Lagrangean relaxation algorithm has
demonstrated to
be far better than the contemporary ones. This algorithm
suggested the
use of column generation algorithms that succeeded to
become the best
ones in the late 80`s and early 90`s. Finally, in the mid
90`s, cutting plane
methods presented results that convinced the community
that this should
be the approach for solving the hardest CVRP problems.
This dissertation
presents an overview of those early algorithms and
proposes a formulation
that allows uniting the best contributions of them. The
resulting algorithm,
labeled as a branch-and-cut-and-price algorithm, deals
with exponentially
many variables and constraints that define a relaxed
solution space that is
the intersection of the relaxed solution spaces considered
in the previous
algorithms. The dissertation also describes a specially
devised dynamic
programming algorithm to solve the column generation
subproblem and
discusses robust branching strategies that altogether
allowed to build an
algorithm that perfoms well on several different classes
of instances. The
computational experience has shown that the approach here
proposed leads
to lower bounds superior than the previous ones. Moreover,
it allowed to
consistently solve instances with up to 135 vertices,
including 18 that were
solved for the first time.
|
24 |
Geometric and algebraic approaches to mixed-integer polynomial optimization using sos programmingBehrends, Sönke 23 October 2017 (has links)
No description available.
|
25 |
From confusion noise to active learning : playing on label availability in linear classification problems / Du bruit de confusion à l’apprentissage actif : jouer sur la disponibilité des étiquettes dans les problèmes de classification linéaireLouche, Ugo 04 July 2016 (has links)
Les travaux présentés dans cette thèse relèvent de l'étude des méthodes de classification linéaires, c'est à dire l'étude de méthodes ayant pour but la catégorisation de données en différents groupes à partir d'un jeu d'exemples, préalablement étiquetés, disponible en amont et appelés ensemble d'apprentissage. En pratique, l'acquisition d'un tel ensemble d'apprentissage peut être difficile et/ou couteux, la catégorisation d'un exemple étant de fait plus ardu que l'obtention de dudit exemple. Cette disparité entre la disponibilité des données et notre capacité à constituer un ensemble d'apprentissage étiqueté a été un des problèmes centraux de l'apprentissage automatique et ce manuscrit s’intéresse à deux solutions usuellement considérées pour contourner ce problème : l'apprentissage en présence de données bruitées et l'apprentissage actif. / The works presented in this thesis fall within the general framework of linear classification, that is the problem of categorizing data into two or more classes based on on a training set of labelled data. In practice though acquiring labeled examples might prove challenging and/or costly as data are inherently easier to obtain than to label. Dealing with label scarceness have been a motivational goal in the machine learning literature and this work discuss two settings related to this problem: learning in the presence of noise and active learning.
|
26 |
Reformulation et décomposition pour un problème d'allocation de ressources dans un réseau optiqueVignac, Benoît 29 January 2010 (has links)
Les réseaux optiques sont aujourd’hui l’élément de base des systèmes de communica- tions modernes, en particulier l’Internet. Grâce au multiplexage en longueurs d’onde et au groupage du tra?c, la bande passante disponible sur une ?bre optique est supérieure à plusieurs térabits par seconde. Cependant les équipements opto-électroniques qui permettent d’opérer ces réseaux sont très coûteux car il doivent fonctionner à un débit très important. Le problème de groupage et du routage d’un ensemble de requêtes couplé avec l’affectation des longueurs d’onde (GRWA) est donc un problème stratégique de première importance. L’objectif est de minimiser le coût du réseau, évalué comme le nombre de ports optiques installés aux nœuds. Il peut être modélisé sous la forme d’un problème d’allocation de ressources dans un réseau à capacité multi-niveaux avec multi-?ots non bifurqués. Cette catégorie de problème est connue pour être très dif?cile compte tenu de la faiblesse de la relaxation linéaire des formulations associées. Les travaux réalisés durant cette thèse ont consisté en le développement de méthodes de résolution pour ce problème à partir de multiples techniques de recherche opéra- tionnelle : méta-heuristique de type recherche avec tabous, décomposition de Dantzig- Wolfe, décomposition de Benders, reformulation en variables binaires, méthode de plans coupants, heuristique d’arrondi. Les méthodes résultantes, dont certaines sont hybrides, permettent d’avoir un aperçu des méthodes ef?caces pour ce type de problème. En partic- ulier, les méthodes basées sur la décomposition de Benders, qui donnent lieu à des procédures d’optimisation hiérarchique dans lesquelles l’affectation de longueurs d’onde est placée au dernier niveau, sont les méthodes les plus ef?caces car elles permettent de séparer le routage optique du routage physique. En?n, nous utilisons la meilleure méthode de résolution pour observer l’impact des contraintes de délais sur la qualité des solutions. / Optical networks are the core element of modern communication systems and in particu- lar Internet. With wavelength multiplexing and grooming capability, terabits per second bandwidth can be reached. However, opto-electronic equipment used to operate these networks are very expensive as their bit rate must be very large. The grooming, routing and wavelength assignment (GRWA) problem, which consists in minimizing the net- work cost, evaluated by the number of required optical ports, while guaranteeing that each request is granted, is of great interest. The GRWA problem can be modeled as a multi-layer capacitated network design problem with non-bifurcated multi-?ows. This type of problem is known to be hard to solve as their linear relaxation is weak. The objective of this work was to develop solution methods based on multiple oper- ations research techniques : Tabu search based meta-heuristic, Dantzig-Wolfe decompo- sition, Benders decomposition, 0 1 reformulation, cutting-planes, rounding heuristic. The resulting solution tools, some of them hybrid, give a perspective on the effective solution approaches for this type of problem. From the experiments, it turns out that the methods based on Benders’ decomposition, which lead to hierarchical optimization procedures, are the most ef?cient as they allow to separate the optical routing from the physical routing with the wavelength assignment decisions taken in the lower stage sub- problem. In addition to the approach comparison, we use the most effective method to evaluate the impact of the delay constraints on the solution quality.
|
Page generated in 0.07 seconds