• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 17
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 31
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effects of stromal cell-derived factor-1 and its peptide analog on cord blood hematopoietic stem cell trafficking and homing. / 基質細胞衍生因子-1及其肽類似物對臍血造血幹細胞歸巢和販運的影響 / CUHK electronic theses & dissertations collection / Ji zhi xi bao yan sheng yin zi-1 ji qi shan lei si wu dui qi xue zao xue gan xi bao gui chao he fan yun de ying xiang

January 2010 (has links)
Homing of hematopoietic stem cells (HSC) to their bone marrow (BM) niches is crucial to clinical stem cell transplantation. However, the molecular mechanism controlling this process remains not fully understood. In this study, we aimed to explore novel regulators of HSC homing through investigating downstream signals and effector molecules of the stromal cell-derived factor-1 (SDF-1)/CXCR4 axis. We further characterized specific functions of targeted regulators by in vitro and in vivo migration/homing assays on human cord blood (CB) CD34+ hematopoietic stem/progenitor cells. / In summary, we have provided the first transcriptome profile of CB CD34 + cells downstream of the SDF-1/CXCR4 axis. We also reported the first evidence that HSC homing was regulated by the tetraspanin CD9. By comparing the homing-related responses of CD34+ to SDF-1 and CTCE-0214, we identified RGS13 as another potential regulator of HSC homing. It is anticipated that strategies for modulating the expressions and functions of CD9 and RGS13 might improve HSC homing to their hematopoietic niches. / To investigate the transcriptional regulation provided by the SDF-1/CXCR4 axis, we performed the first differential transcriptome profiling of human CB CD34+ cells in response to a short-term exposure of SDF-1, and identified a panel of genes with putative homing functions. We demonstrated that CD9, a member of the tetraspanin family proteins, was expressed in CD34 +CD38-/lo and CD34+CD38+ cells. CD9 levels were enhanced by SDF-1, which simultaneously downregulated CXCR4 membrane expression. Using specific inhibitors and activators, we demonstrated that CD9 expressions were modulated via the CXCR4, G-protein, PKC, PLC, ERK and JAK2 signals. Pretreatment of CD34+ cells with anti-CD9 mAb ALB6 significantly inhibited SDF-1-mediated transendothelial migration and calcium mobilization, whereas adhesion to fibronectin and endothelial cells were enhanced. Infusion of CD34+ cells pretreated with ALB6 significantly impaired their homing to bone marrow and spleen of sublethally irradiated NOD/SCID mice. There also appeared a preferential homing/retaining of untreated CD34+CD9+ cells to these niches. Our results indicate that CD9, as a downstream member of SDF-1/CXCR4 signals might possess specific and important functions in HSC homing. / We first investigated the effects of SDF-1 and its analog, CTCE-0214 (a small cyclized peptide analog of the SDF-1 terminal regions), on homing-related properties (chemotaxis, transwell migration, adhesion and actin polymerization) of CB CD34+ cells. Our results demonstrated that both SDF-1 and CTCE-0214 induced a robust actin polymerization response and improved adhesion of CD34+ cells to fibronectin. Unlike SDF-1, CTCE-0214 did not induce a chemotactic response when added to the lower chamber of the transwell system. Addition of CTCE-0214 to the upper chamber significantly improved migration of CD34+ cells to a SDF-1 gradient, but there was no preferential enhancement in the migration of specific colony-forming unit (CFU) progenitors or the more primitive CD34+CD38 -/lo subpopulation. Pre-exposure of CD34+ cells to CTCE-0214 for 4 hours promoted cell migration, whereas SDF-1 pretreatment retarded migration. To dissect the molecular mechanisms leading to the observed functional differences mediated by SDF-1 and CTCE-0214, we investigated whether the two compounds differentially regulated the expression of several known regulators of HSC migration. Flow cytometric analysis revealed that the cell surface expression of CD26, CD44, CD49d, CD49e and CD164 was not changed by either compounds. Exposure to SDF-1, but not CTCE-0214, decreased membrane expression of CXCR4 on CD34+ cells. Addition of CTCE-0214 to the upper chamber inhibited the SDF-1-induced CXCR4 downregulation in both migrated and non-migrated cell population in the transwell setting. Notably, SDF-1 and CTCE-0214 had an opposite effect on the expression level of regulator of G-protein signaling 13 (RGS13), a negative regulator of chemokine-induced responses. Treatment of CD34+ with SDF-1 for 4 hours resulted in a significant increase in RGS13 expression, whereas CTCE-0214 induced a time-dependent decrease in RGS13 expression. Our results provide the first evidence that SDF-1 and CTCE-0214 differentially regulate migration of CD34 + cells, and we speculate that this might be attributed to their differential regulation of CXCR4 and RGS13 expression. / Leung, Kam Tong. / Adviser: Karen Kwai Har Li. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 146-167). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
42

Study of expression of systems CXCR4-CXCL12/SDF-1, CCR7-CCL21 and Ki-67 in the oral squamous cell carcinoma and their association with clinicopathological factors,nodal metastases and survival / Estudo da imunoexpressÃo dos sistemas CXCR4-CXCL12/SDF-1, CCR7-CCL21 e Ki-67 no carcinoma de cÃlulas escamosas oral e sua associaÃÃo com indicadores clÃnicopatolÃgicos, metÃstase linfonodal e sobrevida

GalylÃia Menezes Cavalcante 16 July 2013 (has links)
Chemokines are responsible for the directed migration of leukocyte chemotactic cytokines, coordinating cell movement during inflammation and the transport of hematopoietic cells. In addition to leukocytes, chemokine receptors are also found in neoplastic cells and tumors associated with stromal cells. Among chemokines, and the CXCR4/CXCL12 CCR7/CCL21 systems have been shown the involvement of lymph node metastases or distant metastases in different cancers. Thus, aim of this study was to evaluate the expression of CXCR4, CXCL12, CCR7, CCL21 and Ki-67 in oral squamous cell carcinoma (SCC) and to correlate these markers with clinicopathological indicators, lymph node metastasis and survival. We conducted a survey of reports and paraffin blocks of excisional biopsies of patients with SCC treated at the Hospital Haroldo JuaÃaba (2001-2009). Data on anatomic location of the lesion, sex, age, patient survival, degree of histological differentiation of the tumor, tumor stage and presence or absence of lymph node metastasis, lymphovascular and perineural invasion, nuclear grade and depth of invasion were collected. For immunohistochemical analysis, followed by the technique of streptavidin-biotin-peroxidase using the anti-CXCR4, anti-CXCL12, anti-CCR7, anti-CCL21 and Ki-67 antibody. Histological sections were photomicrographed in 10 fields chosen randomly and measured for the number of labeled tumor cells and determined the percentage of each labeling antibody. The marking of CXCR4 was detected in the cytoplasm and nucleus, CXCL12, CCR7 and CCL21 were only cytoplasmic, their expression was observed in 18 (60%) 8 (22.66%) 16 (53.3%) and 3 (12%) cases, respectively. We found a significant positive association between lymphovascular invasion and immunostaining of CXCR4 (p = 0.007) and CCR7 (P = 0.01) and among these cases metastasis was present in 62.5% and 37.5%, respectively. When in combination with Ki67, we found a significant positive correlation between CXCR4 (p = 0.0086), CXCL12 (p = 0.036) and CCR7 (p = 0:04). Among patients CXCR4 + over 111 months, only 38.4% were alive (p = 0.845), whereas both patients CCR7 + (p = 0.398) as well as CXCR4 +, and CCR7 + (p = 0.441) after 62 months, everyone had already died. We conclude that these chemokines are associated with lymphovascular invasion and cell proliferation, perhaps favoring the development of metastasis and poor prognosis. / As quimiocinas sÃo citocinas quimiotÃticas responsÃveis pela migraÃÃo direcionada de leucÃcitos, coordenando o movimento celular durante a inflamaÃÃo e o transporte de cÃlulas hematopoiÃticas. AlÃm dos leucÃcitos, os receptores de quimiocinas tambÃm sÃo encontrados em cÃlulas neoplÃsicas e em tumores associados com cÃlulas estromais. Dentre as quimiocinas, os sistemas CXCR4/CXCL12 e CCR7/CCL21 tÃm sido demonstrado no envolvimento de metÃstases linfonodais ou à distÃncia em diferentes tipos de cÃncer. Dessa forma, foi objetivo desse trabalho avaliar a expressÃo de CXCR4, CXCL12, CCR7, CCL21 e Ki-67 em carcinoma de cÃlulas escamosas orais (CEC) e correlacionar estes marcadores com indicadores clÃnicopatolÃgicos, metÃstase linfonodal e sobrevida. Realizou-se um levantamento de laudos e blocos parafinados de biopsias excisionais de pacientes portadores de CEC tratados no Hospital Haroldo JuaÃaba (2001 a 2009). Foram coletados dados sobre localizaÃÃo anatÃmica da lesÃo, sexo, idade, sobrevida do paciente, grau de diferenciaÃÃo histopatolÃgica do tumor, estadiamento tumoral e presenÃa ou ausÃncia de metÃstase linfonodal, invasÃo linfovascular e perineural, grau nuclear e profundidade de invasÃo. Para reaÃÃo de imunohistoquÃmica, seguiu-se a tÃcnica da estreptavidina-biotina-peroxidase, utilizando os anticorpos anti-CXCR4, anti-CXCL12, anti-CCR7, anti-CCL21 e Ki-67. As secÃÃes histolÃgicas foram fotomicrografadas em 10 campos escolhidos aleatoriamente e quantificadas quanto ao nÃmero de cÃlulas tumorais marcadas e determinado o percentual de marcaÃÃo de cada anticorpo. A marcaÃÃo de CXCR4 foi detectada em citoplasma e nÃcleo, CXCL12, CCR7 e CCL21 tiveram marcaÃÃo apenas citoplasmÃtica, sendo observada suas expressÃes em 18 (60%), 8 (22,66%), 16 (53,3%) e 3 (12%) casos, respectivamente. Encontrou-se uma associaÃÃo significativa positiva entre a invasÃo linfovascular e a imunomarcaÃÃo do CXCR4 (p=0.007) e CCR7 (p=0.01) e dentre esses casos a metÃstase esteve presente em 62,5% e 37,5%, respectivamente. Quando em associaÃÃo com o Ki67, encontrou-se uma correlaÃÃo positiva significante entre o CXCR4 (p=0.0086), CXCL12 (p=0.036) e CCR7 (p=0.04). Dentre os pacientes CXCR4+, ao longo de 111 meses, apenas 38,4% estavam vivos (p=0.845), ao passo que tanto para pacientes CCR7+ (p = 0.398), quanto CXCR4+ e CCR7+ (p = 0.441), apÃs 62 meses, todos haviam ido a Ãbito. Conclui-se que essas quimiocinas estÃo associadas com a invasÃo linfovascular e proliferaÃÃo celular, talvez favorecendo o desenvolvimento de metÃstases e um pior prognÃstico.
43

The Role of miR-126/126* in Microenvironmental Regulation of Cancer Metastasis

Zhang, Yun January 2013 (has links)
<p>Cancer metastasis is the cause of about 90% of cancer patients' deaths. Despite significant improvements in the past three decades in understanding the molecular bases of oncogenic transformation of cancer cells, little is known about the molecular mechanisms underlying tumour cells' alteration of their microenvironment, entrance into the circulation, and colonization of distant organs. In recent years, accumulating evidence has indicated that tumour microenvironment, which consists of a variety of cell types and extracellular matrix components&#65292;plays an important role in regulating the metastatic abilities of carcinoma cells. Co-opted by cancer cells, those stromal cells promote tumour progression via multiple mechanisms, including enhancement of tumour invasiveness, elevation of angiogenesis, and suppression of immune surveillance activity. </p><p>Using a series of human breast cancer cell lines with different metastatic potentials <italic>in vivo</italic>, we performed an unbiased screen examining expression of miRNAs, and found that miR-126 and miR-126*, whose expression are regulated by methylation of the promoter of their host gene Egfl7 inside tumour cells, were significantly negatively correlated with metastatic potential. Using both mouse xenograft models and <italic>in vitro</italic> assays, we showed that this pair of miRNAs suppressed breast cancer metastasis through shaping the tumour microenvironment without changing tumour cell autonomous properties. Specifically, miR-126 and miR-126* act independently to suppress the sequential recruitment of mesenchymal stem cells (MSCs) and inflammatory monocytes into the primary tumour stroma, consequently inhibiting lung metastasis by breast tumour cells. Mechanistically, these miRNAs directly inhibit the production of stromal cell-derived factor-1 alpha (Sdf-1&alpha;, also known as Cxcl12), and indirectly suppress the expression of chemokine (C-C motif) ligand 2 (Ccl2) by the cancer cells within the tumour mass in an Sdf-1&alpha;-dependent manner. In addition, in contrast with the majority of reports which have shown incorporation of only the guiding strand of the miRNA duplex into the mRNA-targeting RNA induced silencing complex (RISC), both strands of the miR-126 RNA duplex are maintained at a similar level and suppress Sdf-1&alpha; expression independently. </p><p>Collectively, we have determined a dynamic process by which the composition of the primary tumour microenvironment could be altered via a change in the expression of two tumour-suppressive miRNAs derived from a single miRNA precursor to favor metastasis by breast cancer cells. Importantly, this work provides a prominent mechanism to explain the clinical correlation between reduced expression of miR-126/126* and poor metastasis-free survival of breast cancer patients.</p> / Dissertation
44

Modulating chemokine receptor expression in neural stem cell transplants to promote migration after traumatic brain injury

January 2015 (has links)
abstract: Traumatic brain injury (TBI) is a significant public health concern in the U.S., where approximately 1.7 million Americans sustain a TBI annually, an estimated 52,000 of which lead to death. Almost half (43%) of all TBI patients report experiencing long-term cognitive and/or motor dysfunction. These long-term deficits are largely due to the expansive biochemical injury that underlies the mechanical injury traditionally associated with TBI. Despite this, there are currently no clinically available therapies that directly address these underlying pathologies. Preclinical studies have looked at stem cell transplantation as a means to mitigate the effects of the biochemical injury with moderate success; however, transplants suffer very low retention and engraftment rates (2-4%). Therefore, transplants need better tools to dynamically respond to the injury microenvironment. One approach to develop new tools for stem cell transplants may be to look towards the endogenous repair response for inspiration. Specifically, activated cell types surrounding the injury secrete the chemokine stromal cell-derived factor-1α (SDF-1α), which has been shown to play a critical role in recruiting endogenous neural progenitor/stem cells (NPSCs) to the site of injury. Therefore, it was hypothesized that improving NPSC response to SDF-1α may be a viable mechanism for improving NPSC transplant retention and migration into the surrounding host tissue. To this end, work presented here has 1. identified critical extracellular signals that mediate the NPSC response to SDF-1α, 2. incorporated these findings into the development of a transplantation platform that increases NPSC responsiveness to SDF-1α and 3. observed increased NPSC responsiveness to local exogenous SDF-1α signaling following transplantation within our novel system. Future work will include studies investigating NSPC response to endogenous, injury-induced SDF-1α and the application of this work to understanding differences between stem cell sources and their implications in cell therapies. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2015
45

Imunoexpressão de CXCL12, BCL-2 e MMP-9: Sua relevância no comportamento biológico de neoplasias de glândulas salivares

Santos, José Matheus Alves dos 18 August 2016 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2018-05-17T13:27:08Z No. of bitstreams: 1 PDF - José Matheus Alves dos Santos.pdf: 29393004 bytes, checksum: eb8fee7ed5d16296c35d9765252c2ff2 (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2018-05-23T16:59:28Z (GMT) No. of bitstreams: 1 PDF - José Matheus Alves dos Santos.pdf: 29393004 bytes, checksum: eb8fee7ed5d16296c35d9765252c2ff2 (MD5) / Made available in DSpace on 2018-05-23T16:59:28Z (GMT). No. of bitstreams: 1 PDF - José Matheus Alves dos Santos.pdf: 29393004 bytes, checksum: eb8fee7ed5d16296c35d9765252c2ff2 (MD5) Previous issue date: 2016-08-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Introduction: Proinflammatory cytokines or chemokines are important regulators of cell trafficking and adhesions. The chemokine CXCL12 (C-X-C motif chemokine ligand 12) binds primarily to CXCR4 receptor, regulating intracellular signals, through several ways, related to important events in tumorigenesis as chemotaxis, cell survival, angiogenesis, proliferation, invasion and metastasis. There are insuficient informations in scientific literature about the CXCL12 in relation to survival or apoptotic markers (Bcl-2) and invasion/metastasis (MMP-9) in tumor cells of salivary gland neoplasm. Methods: In 30 pleomorphic adenomas (PA) and 30 mucoepidermoid carcinomas (MCE) were collected clinical and pathological data and analyzed in relation to the immunohistochemical expression, through the estreptovidin-biotin peroxidase method, of CXCL12, Bcl-2 and MMP-9 antibodies. Results: it was observed higher expression of CXCL12 in MCE than in PA (p = 0.001), while in PA there has been greater expression of Bcl-2 (p = 0.031). The MMP-9 was negative in most cases of the sample. Conclusion: it was concluded that the CXCL12 is not associated with the Bcl-2 and MMP-9 expression. The chemokine can be related to pathogenesis of mucoepidermoid carcinomas, whereas the Bcl-2 can be related to tumoral pathogenesis of pleomorphic adenomas. MMP-9 does not appear to play a role in the pathogenesis of the sample. / Introdução: As citocinas pró-inflamatórias ou quimiocinas são importantes reguladores das interações e adesões celulares. A quimiocina CXCL12 (C-X-C motif chemokine ligand 1) liga-se principalmente ao receptor CXCR4, regulando sinalizações intracelulares, através de várias vias, relacionadas a eventos importantes na tumorigênese como a quimiotaxia, proliferação e sobrevivência celular, angiogénese, invasão e metástase. Existe pouca informação na literatura científica sobre a relação da CXCL12 com marcadores de sobrevivência ou apoptóticos (Bcl-2) e de invasão/metástase (MMP-9) em neoplasias de glândulas salivares. Métodos: Em 30 adenomas pleomórficos (AP) e 30 carcinomas mucoepidermoides (CME) foram coletados dados clínico-patológicos os quais foram analisados em relação à expressão imunistoquimica, por meio do método estreptovidina - biotina peroxidase, dos anticorpos CXCL12, Bcl-2 e MMP-9. Resultados: observou-se maior expressão da CXCL12 no CME do que no AP (p = 0,001), enquanto que em AP houve maior expressão de Bcl-2 (p=0,031). A MMP-9 foi negativa na maioria dos casos da amostra. Conclusão: Conclui-se que a expressão da CXCL12 não parece estar associada com a Bcl-2 e MMP-9. A quimioquina pode ser relacionada com a patogênese de carcinomas mucoepidermóides, ao passo que a proteína Bcl-2 pode ser relacionada com a patogênese de adenomas pleomórficos. A MMP-9 não parece exercer um papel na patogenia da amostra avaliada.
46

Identification of CXCL12-abundant reticular cells in human adult bone marrow / 成人骨髄におけるCXCL12-abundant reticular 細胞の同定

Aoki, Kazunari 24 September 2021 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13441号 / 論医博第2240号 / 新制||医||1054(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 滝田 順子, 教授 江藤 浩之 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
47

Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids / 長時間高強度の運動はグルココルチコイドを介して単純ヘルペスウイルス感染症に対して変動性免疫応答を誘導する

Adachi, Akimasa 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23467号 / 医博第4774号 / 新制||医||1053(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 森信 暁雄, 教授 上野 英樹, 教授 小柳 義夫 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
48

Der Einfluss des onkofetalen Glykoproteins 5T4 auf das CXCL12-System in humanen Tumorzelllinien

Koch, Christian 08 January 2020 (has links)
In dieser Dissertation wurde die Beziehung zwischen den Chemokinrezeptoren CXCR4, und CXCR7 sowie dem onkofetalen Glykoprotein 5T4 in verschiedenen Tumorzelllinien untersucht.
49

Development of an Injectable Hydrogel Platform to Capture and Eradicate Glioblastoma Cells with Chemical and Physical Stimuli

Khan, Zerin Mahzabin 15 May 2023 (has links)
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor. Even after patients undergo maximum and safe surgical resection followed by adjuvant chemotherapy and radiation therapy, residual GBM cells form secondary tumors which lead to poor survival times and prognoses for patients. This tumor recurrence can be attributed to the inherent GBM heterogeneity that makes it difficult to eradicate the therapy-resistant and tumorigenic subpopulation of GBM cells with stem cell-like properties, referred to as glioma stem cells (GSCs). Additionally, the migratory nature of GBM/GSCs enable them to invade into the healthy brain parenchyma beyond the resection cavity to generate new tumors. In an effort to address these challenges of GBM recurrence, this research aimed to develop a biomaterials-based approach to attract, capture, and eradicate GBM cells and GSCs with chemical and physical stimuli. Specifically, it is proposed that after surgical removal of the primary GBM tumor mass, an injectable hydrogel can be dispensed into the resection cavity for crosslinking in situ. A combination of chemical and physical cues can then induce the migration of the residual GBM/GSCs into the injectable hydrogel to localize and concentrate the malignant cells prior to non-invasively abating them. In order to develop this proposed treatment, this dissertation focused on 1) characterizing and optimizing the thiol-Michael addition injectable hydrogel, 2) attracting and entrapping GBM/GSCs into the hydrogel with CXCL12-mediated chemotaxis, and 3) assessing the feasibility of utilizing histotripsy to mechanically and non-invasively ablate cells entrapped in the hydrogel. The results revealed that hydrogel formulations comprising 0.175 M NaHCO3(aq) and 50 wt% water content were the most optimal for physical, chemical, and biological compatibility with the GBM microenvironment on the basis of their swelling characteristics, sufficiently crosslinked polymer networks, degradation rates, viscoelastic properties, and interactions with normal human astrocytes. Loading the hydrogel with 5 µg/mL of CXCL12 was optimal for the slow, sustained release of the chemokine payload. A dual layer hydrogel platform demonstrated in vitro that the resulting chemotactic gradient induced the invasion of GBM cells and GSCs from the extracellular matrix and into the synthetic hydrogel with ameboid migration and myosin IIA activation. This injectable hydrogel also demonstrated direct therapeutic benefits by passively eradicating entrapped GBM cells through matrix diffusion limitations as well as decreasing the GBM malignancy and GSC stemness upon cancer cell-hydrogel interactions. Research findings revealed the hydrogels can be synthesized under clinically relevant conditions mimicking GBM resection in vitro, and hydrogels were distinguishable with ultrasound imaging. Furthermore, the synthetic hydrogel was acoustically active to generate a stable cavitation bubble cloud with histotripsy treatment for ablation of entrapped red blood cells with well-defined, uniform lesion areas. Overall, the results from this research demonstrate this injectable hydrogel is a promising platform to attract and entrap malignant GBM/GSCs for subsequent eradication with chemical and physical stimuli. Further development of this platform, such as by integrating electric cues for electrotaxis-directed cell migration, may help to improve the cancer cell trapping capabilities and thereby mitigate GBM tumor recurrences in patients. / Doctor of Philosophy / Glioblastoma multiforme (GBM) is the deadliest type of primary brain cancer. Upon GBM diagnosis, patients first undergo surgery to remove the tumor from the brain. After waiting several weeks for the wound healing process due to surgery, patients are administered chemotherapy with drugs and radiation therapy to eradicate any remaining GBM cells. Even after undergoing these combinatorial treatments, the cancer returns and leads to median survival times of only 15 months in 90% of patients. Complete GBM eradication is difficult, since the cancer cells can migrate into healthy brain tissue beyond the original tumor site. Additionally, GBM is highly heterogenous and composed of different cell types that can resist chemotherapy and radiation therapy, which lead to secondary tumors and cancer relapse. To address these challenges, this dissertation aimed to develop a polymer-based material (specifically a hydrogel) that can attract, entrap, and localize the GBM cells into the material to subsequently eradicate them with chemical and physical signals. This hydrogel platform would have important clinical implications, as it can potentially be dispensed into the empty cavity after surgical removal of the tumor in the brain. The hydrogel can then be harnessed to attract residual GBM cells for directed migration into the hydrogel to concentrate and localize the cancer cells for their subsequent destruction with a non-invasive technology. In order to develop this proposed treatment, this dissertation investigated the following three aims: 1) to study and optimize the injectable hydrogel for chemical, physical, and biological compatibility with the GBM therapy; 2) to utilize chemical signals to attract and entrap the GBM cells into the hydrogel; and 3) to apply focused ultrasound with high amplitude, short duration negative pressure pulses to mechanically fractionate and destroy the cells entrapped in the hydrogel. The results revealed that the hydrogel comprising 0.175 M NaHCO3(aq) and 50 wt% water content was the most optimal formulation. CXCL12 chemokine proteins loaded into the hydrogel at 5 µg/mL released slowly from the hydrogel to generate a chemical gradient and thereby attract GBM cells to promote their invasion into the hydrogel matrix. The hydrogel was demonstrated to respond well to focused ultrasound treatment, which was capable of mechanically fractionating and destroying red blood cells in the hydrogel uniformly. Overall, the results from this research provide support that this hydrogel platform can attract, entrap, and eradicate GBM cells with chemical and physical stimuli. Hence, further improvement of this platform and implementation of this novel GBM treatment may in the future help minimize GBM cancer relapse in patients who undergo conventional therapies, thereby extending their survival times.
50

Hematopoietic cell-derived IL-15 supports NK cell development in scattered and clustered localization within the bone marrow / 造血細胞由来のIL-15は骨髄の散在型とクラスター型に局在したNK細胞の分化を支持する

Abe, Shinya 23 January 2024 (has links)
京都大学 / 新制・論文博士 / 博士(医科学) / 乙第13588号 / 論医科博第11号 / 新制||医科||10(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 濵﨑 洋子, 教授 河本 宏, 教授 金子 新 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0301 seconds