• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation fonctionnelle des inhibiteurs de Cyclin-Dependent Kinase (CDK) dans le fruit de tomate (Solanum lycopersicum) / Functional characterization of Cyclin-Dependent Kinase (CDK) inhibitors in tomato fruit (Solanum lycopersicum)

Nafati, Mehdi 18 June 2010 (has links)
Au sein de l’unité mixte de recherche 619 de l’Institut National de Recherche Agronomique, le groupe « Organogénèse du Fruit et Endoréduplication » étudie les acteurs moléculaires prenant part au contrôle du cycle cellulaire dans le fruit de tomate. L’objet de la présente thèse est l’étude de l’inhibiteur du cycle cellulaire Kip-Related Protein, et son rôle durant le développement du fruit. Identification de motifs protéiques fonctionnels chez l’Inhibiteur de Kinase Cycline-Dependent SlKRP1 chez Solanum lycopersicum : Leur rôle dans les interactions avec des partenaires du cycle cellulaire Les Kip-related proteins (KRPs) jouent un rôle majeur dans la régulation du cycle cellulaire. Il a été montré qu’ils inhibent les complexes CDK/Cyclin et ainsi bloquent la progression du cycle cellulaire. Malgré leur manque d’homologie avec leurs homologues animaux au delà de leur motif de liaison CDK/Cyclin, localisé à l’extrémité C-terminal de la protéine dans les séquences de plante, des études antérieurs ont montré la présence de motifs conservés spécifiques aux plantes chez certaines KRPs. Nous n’avons cependant que peu d’information concernant leur fonction. Nous montrons ici que les KRPs sont distribués en deux sous groupes phylogénétiques, et que chaque sous-groupe dispose de courts motifs spécifiques conservés. Les KRPs du sous-groupe 1 disposent ainsi de six motifs conservés entre eux. Utilisant SlKRP1, qui appartient au sous-groupe 1, nous avons identifié des motifs responsables de la localisation de la protéine et de ses interactions protéine-protéine. Nous montrons que le motif 2 est responsable de l’interaction avec CSN5, une sous-unité du complexe signalosome, et que le motif 5 a un effet redondant avec le motif 3 pour ce qui est de la localisation sub-cellulaire de la protéine. Nous montrons de plus que SlKRP1 est capable de guider SlCDKA1 et SlCycD3;1 vers le noyau, et ce même en l’absence du motif de liaison CDK/Cycline précédemment référencé. Ce nouveau site d’interaction est probablement localisé dans la partie centrale de la séquence de SlKRP1. Ces résultats apportent de nouveaux indices quant au rôle de la partie encore méconnue de cette protéine. La surexpression de SlKRP1 dans le mésocarpe de tomate détruit la proportionnalité entre endoréduplication et taille cellulaire Le fruit est un organe spécialisé résultant du développement de l’ovaire après pollinisation et fertilisation, et qui offre un environnement adéquat pour la maturation des graines et leur dispersion. De part leur importance en nutrition humaine et leur importance économique, les espèces à fruit charnu ont été le sujet d’étude développementales principalement orientée vers la formation de l’ovaire, la mise à fruit et la maturation du fruit. La phase de croissance du fruit a été beaucoup moins étudiée, bien que la division cellulaire et la croissance cellulaire prenant place durant cette période soient cruciales à la détermination de la taille finale du fruit, ainsi que de sa masse et sa forme. Le développement du mésocarpe du fruit de tomate se déroule par la succession d’une phase de division cellulaire suivie d’une phase d’expansion cellulaire associée à l’endoréduplication, menant à la formation de cellules géantes (jusqu’à 0,5mm) avec des niveaux de ploïdie pouvant atteindre 256C. Bien qu’une relation évidente entre endoréduplication et croissance cellulaire ait été montrée par de nombreux exemples chez les plantes, le rôle exact de l’endoréduplication n’a toujours pas été élucidé, étant donné que la plupart des expériences induisant une modification du niveau d’endoréduplication dans la plante affectaient aussi la division cellulaire. Nous avons étudié la cinétique du dévelopement du mésocarpe de tomate au niveau morphologique et cytologique et avons étudié l’effet de la diminution du niveau d’endoréduplication sur le dévelopement du fruit en sur-exprimant l’inhibiteur du cycle cellulaire Kip-Related Protein 1 (SlKRP1) spécifiquement dans les cellules en croissance du mésocarpe de tomate. Nous montrons une proportionnalité directe entre endoréduplication et taille cellulaire durant le développement normal du fruit, ce qui nous a permis de construire un modèle de développement du mésocarpe définissant l’épaisseur du péricarpe en ne prenant en compte que le nombre de divisions cellulaires et le nombre de tours d’endoréduplication. De façon surprenante, les mésocarpes de tomate affectés dans leur niveau d’endoréduplication par la sur-expression de SlKRP1 ne sont pas affectés au niveau de la taille des cellules ou du fruit, ni dans leur contenu métabolique. Nos résultats démontrent pour la première fois qu’alors que le niveau de ploïdie est étroitement lié avec la taille des cellules et du fruit, l’endoréduplication n’est pas responsable de la croissance cellulaire du mésocarpe de tomate. / Within the Joint Research Unit 619 of the National Institute of Agronomic Research (INRA), the group "Organogenesis of the Fruit and endoreduplication" examines the molecular players involved in cell cycle control in tomato fruit. The purpose of this thesis is the study of the cell cycle inhibitor Kip-Related Protein and its role during fruit development. Identification of protein motifs in the functional inhibitor of Cyclin-Dependent Kinase in Solanum lycopersicum SlKRP1: Their role in interactions with partners in the cell cycle The Kip-related proteins (KRPs) play a major role in the regulation of cell cycle. It has been shown to inhibit the CDK / Cyclin and thus block cell cycle progression. Despite their lack of homology with their counterparts in animals beyond their binding motif CDK / Cyclin, located at the C-terminal protein sequences in the plant, previous studies have shown the presence of conserved motifs plant specific in some KRPs, but there is little information about their function. We show here that the KRPs are distributed into two phylogenetic groups, and that each subgroup has specific short conserved motifs. The KRPs from subgroup 1 have six conserved motifs. Using SlKRP1, which belongs to subgroup 1, we have identified the motifs responsible for the localization of the protein and protein-protein interactions. We demonstrate that the pattern 2 is responsible for the interaction with CSN5, a subunit of the signalosome complex, and that the motif 5 is redundant with motif 3 with respect to the sub-cellular localization of the protein. We also show that SlKRP1 is capable of guiding SlCDKA1 and SlCycD3; 1 to the nucleus, even in the absence of CDK / cyclin binding motif previously referenced. This new site of interaction is probably located in the central part of the sequence of SlKRP1. These results provide new clues about the role of the little-known part of this protein. Overexpression of SlKRP1 in tomato mesocarp disrupts the proportionality between endoreduplication and cell size The fruit is a specialized organ which results from the ovary after pollination and fertilization, and provides a suitable environment for seed maturation and dispersal. Because of their importance in human nutrition and economic importance, fleshy fruit species have been the subject of study mainly focused on the developmental formation of the ovary, fruit set and fruit ripening. The stage of fruit growth has been much less studied, although cell division and cell growth taking place during this period are crucial to determining the final size of the fruit, as well as its mass and shape. The development of tomato fruit mesocarp occurs by the estate of a phase of cell division followed by a phase of cell expansion associated with endoreduplication, leading to the formation of giant cells (up to 0.5 mm) with ploidy levels of up to 256C. Although a clear relationship between endoreduplication and cell growth has been shown by many examples in plants, the exact role of endoreduplication has still not been elucidated, since most of the experiments leading to a change in the level of endoreduplication in plants also affected cell division. We studied the kinetics of the development of tomato mesocarp morphologically and cytologically and studied the effect of the reduced level of endoreduplication in the development of the fruit over-expressing the cell cycle inhibitor Kip-Related Protein 1 (SlKRP1) specifically in the growing cells of the tomato mesocarp. We show a direct proportionality between endoreduplication and cell size during normal development of the fruit, which allowed us to build a model for development of mesocarp defining the thickness of the pericarp by taking into account the number of cell divisions and the number of rounds of endoreduplication. Surprisingly, the tomato mesocarps affected in their level of endoreduplication by over-expression of SlKRP1 are not affected in terms of cell size and fruit, or on their metabolic content. Our results demonstrate for the first time that while the level of ploidy is closely linked with cell size and fruit, endoreduplication is not responsible for the cell growth of tomato mesocarp.
2

Mathematical modelling of DNA replication

Brümmer, Anneke 30 September 2010 (has links)
Bevor sich eine Zelle teilt muss sie ihr gesamtes genetisches Material verdoppeln. Eukaryotische Genome werden von einer Vielzahl von Replikationsstartpunkten, den sogenannten Origins, aus repliziert, die über das gesamte Genome verteilt sind. In dieser Arbeit wird der zugrundeliegende molekulare Mechanismus quantitativ analysiert, der für die nahezu simultane Initiierung der Origins exakt ein Mal pro Zellzyklus verantwortlich ist. Basierend auf umfangreichen experimentellen Studien, wird zunächst ein molekulares regulatorisches Netzwerk rekonstruiert, welches das Binden von Molekülen an die Origins beschreibt, an denen sich schließlich komplette Replikationskomplexe (RKs) bilden. Die molekularen Reaktionen werden dann in ein Differentialgleichungssystem übersetzt. Um dieses mathematische Modell zu parametrisieren, werden gemessene Proteinkonzentrationen als Anfangswerte verwendet, während kinetische Parametersätze in einen Optimierungsverfahren erzeugt werden, in welchem die Dauer, in der sich eine Mindestanzahl von RKs gebildet hat, minimiert wird. Das Modell identifiziert einen Konflikt zwischen einer schnellen Initiierung der Origins und einer effizienten Verhinderung der DNA Rereplikation. Modellanalysen deuten darauf hin, dass eine zeitlich verzögerte Origininitiierung verursacht durch die multiple Phosphorylierung der Proteine Sic1 und Sld2 durch Cyclin-abhängige Kinasen, G1-Cdk bzw. S-Cdk, essentiell für die Lösung dieses Konfliktes ist. Insbesondere verschafft die Mehrfach-Phosphorylierung von Sld2 durch S-Cdk eine zeitliche Verzögerung, die robust gegenüber Veränderungen in der S-Cdk Aktivierungskinetik ist und außerdem eine nahezu simultane Aktivierung der Origins ermöglicht. Die berechnete Verteilung der Fertigstellungszeiten der RKs, oder die Verteilung der Originaktivierungszeiten, wird auch genutzt, um die Konsequenzen bestimmter Mutationen im Assemblierungsprozess auf das Kopieren des genetischen Materials in der S Phase des Zellzyklus zu simulieren. / Before a cell divides it has to duplicate its entire genetic material. Eukaryotic genomes are replicated from multiple replication origins across the genome. This work is focused on the quantitative analysis of the underlying molecular mechanism that allows these origins to initiate DNA replication almost simultaneously and exactly once per cell cycle. Based on a vast amount of experimental findings, a molecular regulatory network is constructed that describes the assembly of the molecules at the replication origins that finally form complete replication complexes. Using mass–action kinetics, the molecular reactions are translated into a system of differential equations. To parameterize the mathematical model, the initial protein concentrations are taken from experimental data, while kinetic parameter sets are determined using an optimization approach, in particular a minimization of the duration, in which a minimum number of replication complexes has formed. The model identifies a conflict between the rapid initiation of replication origins and the efficient inhibition of DNA rereplication. Analyses of the model suggest that a time delay before the initiation of DNA replication provided by the multiple phosphorylations of the proteins Sic1 and Sld2 by cyclin-dependent kinases in G1 and S phase, G1-Cdk and S-Cdk, respectively, may be essential to solve this conflict. In particular, multisite phosphorylation of Sld2 by S-Cdk creates a time delay that is robust to changes in the S-Cdk activation kinetics and additionally allows the near-simultaneous activation of multiple replication origins. The calculated distribution of the assembly times of replication complexes, that is also the distribution of origin activation times, is then used to simulate the consequences of certain mutations in the assembly process on the copying of the genetic material in S phase of the cell cycle.

Page generated in 0.0635 seconds