• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of chromatin architecture in regulating Shh gene during mouse limb development

Paliou, Christina 20 December 2019 (has links)
Die physische Nähe zwischen Genpromotoren und regulatorischen Elementen (Enhancer) spielt eine entscheidene Rolle in der Genexpression, um präzise räumliche und zeitliche Genexpressionmuster während der Embryogenese zu erzeugen. Abhängig von der Aktivität der Zielgene lassen sich zwei Typen von Interaktionen unterscheiden. Zum einen führen dynamische Enhancer-Promoter Interaktionen unmittelbar zur Genexpression, wohingegen in anderen Fällen stabile Interaktionen bereits vor der Genexpression existieren. In der vorliegenden Studie wurde die Rolle der stabilen Interaktion zwischen dem Shh Gen und dem Extremitätenenhancer, der ZRS, während der Embryonalentwicklung in der Maus untersucht. Der Verlust der konstitutiven Transkription, die den ZRS Enhancer abdeckt, führte zu einer Verschiebung innerhalb der Shh-ZRS Kontakte und einer moderaten Reduzierung der Shh Genexpression. Im Gegensatz dazu führte die Mutation von CTCF Bindungsstellen, die den ZRS Enhancer umgeben, zu einem Verlust der stabilen Shh-ZRS Interaktion und einem 50%igen Rückgang in der Shh Genexpression. Dieser Expressionsverlust hatte jedoch keine phänotypischen Auswirkungen in den Deletionsmutanten, was darauf hindeutet, dass die restliche Genaktivität und Enhancer-Promotor-Interaktion über einen zusätzlichen, CTCF-unabhängigen Mechanismus erfolgt. Erst die kombinierte Deletion von CTCF-Bindungsmotiven und einem hypomorphen ZRS-Allel führte zu einem fast vollständigen Expressionsverlust von Shh und damit zu einem schweren Funktionsverlust und Gliedmaßen-Agenesie. Die hier präsentierten Ergebnisse zeigen, dass die stabile Chromatinstruktur am Shh Locus von mehreren Komponenten getragen wird und die physicalische Interaktion zwischen Enhancern und Promotern für eine robuste Transkription während der Embryonalentwicklung benötigt werden. / Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases proximity coincides with gene activation, whereas in others preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in a loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele resulting in severe Shh loss-of-function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.
2

Mathematical modelling of DNA replication

Brümmer, Anneke 30 September 2010 (has links)
Bevor sich eine Zelle teilt muss sie ihr gesamtes genetisches Material verdoppeln. Eukaryotische Genome werden von einer Vielzahl von Replikationsstartpunkten, den sogenannten Origins, aus repliziert, die über das gesamte Genome verteilt sind. In dieser Arbeit wird der zugrundeliegende molekulare Mechanismus quantitativ analysiert, der für die nahezu simultane Initiierung der Origins exakt ein Mal pro Zellzyklus verantwortlich ist. Basierend auf umfangreichen experimentellen Studien, wird zunächst ein molekulares regulatorisches Netzwerk rekonstruiert, welches das Binden von Molekülen an die Origins beschreibt, an denen sich schließlich komplette Replikationskomplexe (RKs) bilden. Die molekularen Reaktionen werden dann in ein Differentialgleichungssystem übersetzt. Um dieses mathematische Modell zu parametrisieren, werden gemessene Proteinkonzentrationen als Anfangswerte verwendet, während kinetische Parametersätze in einen Optimierungsverfahren erzeugt werden, in welchem die Dauer, in der sich eine Mindestanzahl von RKs gebildet hat, minimiert wird. Das Modell identifiziert einen Konflikt zwischen einer schnellen Initiierung der Origins und einer effizienten Verhinderung der DNA Rereplikation. Modellanalysen deuten darauf hin, dass eine zeitlich verzögerte Origininitiierung verursacht durch die multiple Phosphorylierung der Proteine Sic1 und Sld2 durch Cyclin-abhängige Kinasen, G1-Cdk bzw. S-Cdk, essentiell für die Lösung dieses Konfliktes ist. Insbesondere verschafft die Mehrfach-Phosphorylierung von Sld2 durch S-Cdk eine zeitliche Verzögerung, die robust gegenüber Veränderungen in der S-Cdk Aktivierungskinetik ist und außerdem eine nahezu simultane Aktivierung der Origins ermöglicht. Die berechnete Verteilung der Fertigstellungszeiten der RKs, oder die Verteilung der Originaktivierungszeiten, wird auch genutzt, um die Konsequenzen bestimmter Mutationen im Assemblierungsprozess auf das Kopieren des genetischen Materials in der S Phase des Zellzyklus zu simulieren. / Before a cell divides it has to duplicate its entire genetic material. Eukaryotic genomes are replicated from multiple replication origins across the genome. This work is focused on the quantitative analysis of the underlying molecular mechanism that allows these origins to initiate DNA replication almost simultaneously and exactly once per cell cycle. Based on a vast amount of experimental findings, a molecular regulatory network is constructed that describes the assembly of the molecules at the replication origins that finally form complete replication complexes. Using mass–action kinetics, the molecular reactions are translated into a system of differential equations. To parameterize the mathematical model, the initial protein concentrations are taken from experimental data, while kinetic parameter sets are determined using an optimization approach, in particular a minimization of the duration, in which a minimum number of replication complexes has formed. The model identifies a conflict between the rapid initiation of replication origins and the efficient inhibition of DNA rereplication. Analyses of the model suggest that a time delay before the initiation of DNA replication provided by the multiple phosphorylations of the proteins Sic1 and Sld2 by cyclin-dependent kinases in G1 and S phase, G1-Cdk and S-Cdk, respectively, may be essential to solve this conflict. In particular, multisite phosphorylation of Sld2 by S-Cdk creates a time delay that is robust to changes in the S-Cdk activation kinetics and additionally allows the near-simultaneous activation of multiple replication origins. The calculated distribution of the assembly times of replication complexes, that is also the distribution of origin activation times, is then used to simulate the consequences of certain mutations in the assembly process on the copying of the genetic material in S phase of the cell cycle.

Page generated in 0.02 seconds