• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological tools for discrete shape analysis

Chaussard, John 02 December 2010 (has links) (PDF)
L'analyse d'images est devenue ces dernières années une discipline de plus en plus riche de l'informatique. La topologie discrète propose un panel d'outils incontournables dans le traitement d'images, notamment grâce à l'outil du squelette, qui permet de simplifier des objets tout en conservant certaines informations intactes. Cette thèse étudie comment certains outils de la topologie discrète, notamment les squelettes, peuvent être utilisés pour le traitement d'images de matériaux.Le squelette d'un objet peut être vu comme une simplification d'un objet, possédant certaines caractéristiques identiques à celles de l'objet original. Il est alors possible d'étudier un squelette et de généraliser certains résultats à l'objet entier. Dans une première partie, nous proposons une nouvelle méthode pour conserver, dans un squelette, certaines caractéristiques géométriques de l'objet original (méthode nécessitant un paramètre de filtrage de la part de l'utilisateur) et obtenir ainsi un squelette possédant la même apparence que l'objet original. La seconde partie propose de ne plus travailler avec des objets constitués de voxels, mais avec des objets constitués de complexes cubiques. Dans ce nouveau cadre, nous proposons de nouveaux algorithmes de squelettisation, dont certains permettent de conserver certaines caractéristiques géométriques de l'objet de départ dans le squelette, de façon automatique (aucun paramètre de filtrage ne doit être donné par l'utilisateur). Nous montrerons ensuite comment un squelette, dans le cadre des complexes cubiques, peut être décomposé en différentes parties. Enfin, nous montrerons nos résultats sur différentes applications, allant de l'étude des matériaux à l'imagerie médicale
2

Topological tools for discrete shape analysis / Utilisation de la topologie pour l'analyse de formes discrètes

Chaussard, John 02 December 2010 (has links)
L'analyse d'images est devenue ces dernières années une discipline de plus en plus riche de l'informatique. La topologie discrète propose un panel d'outils incontournables dans le traitement d'images, notamment grâce à l'outil du squelette, qui permet de simplifier des objets tout en conservant certaines informations intactes. Cette thèse étudie comment certains outils de la topologie discrète, notamment les squelettes, peuvent être utilisés pour le traitement d'images de matériaux.Le squelette d'un objet peut être vu comme une simplification d'un objet, possédant certaines caractéristiques identiques à celles de l'objet original. Il est alors possible d'étudier un squelette et de généraliser certains résultats à l'objet entier. Dans une première partie, nous proposons une nouvelle méthode pour conserver, dans un squelette, certaines caractéristiques géométriques de l'objet original (méthode nécessitant un paramètre de filtrage de la part de l'utilisateur) et obtenir ainsi un squelette possédant la même apparence que l'objet original. La seconde partie propose de ne plus travailler avec des objets constitués de voxels, mais avec des objets constitués de complexes cubiques. Dans ce nouveau cadre, nous proposons de nouveaux algorithmes de squelettisation, dont certains permettent de conserver certaines caractéristiques géométriques de l'objet de départ dans le squelette, de façon automatique (aucun paramètre de filtrage ne doit être donné par l'utilisateur). Nous montrerons ensuite comment un squelette, dans le cadre des complexes cubiques, peut être décomposé en différentes parties. Enfin, nous montrerons nos résultats sur différentes applications, allant de l'étude des matériaux à l'imagerie médicale / These last years, the domain of image analysis has drastically evolved. Digital topology offer a set of tools adapted to image analysis, especially the skeletonization process (also called homotopic thinning) which can simplify input data while keeping specific information untouched. In this thesis, we focus on how digital topology, especially skeletons, can help material image analysis.The goal of a skeletonization process is to remove unnecessary information from an input, and provide a simplified object, called the skeleton, having the same characteristics than the original data. It is then possible to perform some computations on the skeleton and generalise their results to the original data. In the first part of this thesis, we propose some new tools for preserving, during skeletonization, important geometrical features of the original data, and obtain a skeleton with the same visual appearance than the input.In the second part, we present the cubical complex framework, where objects are no more made only of voxels. We propose in this framework new skeletonization algorithms, some of them preserving automatically the visual aspect of the input during the thinning process (no filtering parameter from the user is required). We then show how a skeleton, in the cubical complexes framework, can be decomposed into basic parts, and we show some applications of these algorithms to material image analysis and medical image analysis
3

Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires / Separating cycles, isoperimetry and modifications of distances in large random planar maps

Lehéricy, Thomas 04 December 2019 (has links)
Les cartes planaires sont des graphes planaires dessinés sur la sphère et vus à déformation près. De nombreuses propriétés des cartes sont supposées universelles, dans le sens où elles ne dépendent pas des détails du modèle choisi. Nous commençons par établir une inégalité isopérimétrique dans la quadrangulation infinie du plan. Nous confirmons également une conjecture de Krikun portant sur la longueur des cycles les plus courts séparant la boule de rayon $r$ de l'infini. Dans un deuxième temps, nous nous intéressons à l'effet de modifications de distances sur la géométrie à grande échelle des quadrangulations uniformes, élargissant la classe d'universalité de la carte brownienne. Nous montrons également que la bijection de Tutte, entre quadrangulations et cartes planaires, est asymptotiquement une isométrie. Enfin, nous établissons une borne supérieure sur le temps de mélange de la marche aléatoire dans les cartes aléatoires. / Planar maps are planar graphs drawn on the sphere and seen up to deformation. Many properties of maps are conjectured to be universal, in the sense that they do not depend on the details of the model.We begin by establishing an isoperimetric inequality in the infinite quadrangulation of the plane. We also confirm a conjecture by Krikun concerning the length of the shortest cycles separating the ball of radius $r$ from infinity. We then consider the effect of modifications of distances on the large-scale geometry of uniform quadrangulations, extending the universality class of the Brownian map. We also show that the Tutte bijection, between quadrangulations and planar maps, is asymptotically an isometry. Finally, we establish an upper bound on the mixing time of the random walk in random maps.

Page generated in 0.1263 seconds