Spelling suggestions: "subject:"détection électrochimique"" "subject:"étection électrochimique""
1 |
Construction et contrôle informatique d'un potentiostat comme détecteur ampérométrique des hydrates de carbone suivant leur séparation par électrophorèse capillaireVilliard, Éric January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Détection électrochimique en puce microfluidique : importance des transducteurs nanocarbonés / Electrochemical detection in microfluidic devices : study of carbon-based nanomaterials as transducersZribi, Bacem 26 February 2016 (has links)
Dans le cadre d’une thèse en cotutelle qui a démarré en Janvier 2013, j'ai développé des biopuces ultra-sensibles pour la détection de maladies infectieuses (Tuberculose et Hepatite C). Ce sujet, qui combine recherche fondamentale et recherche appliquée dans pour le diagnostic précoce de maladies, avait pour but la détection rapide d’espèces chimiques fortement diluées dans un liquide biologique. Cette détection se fait de manière électrochimique, grâce à l’utilisation des nanomatériaux carbonés innovants (feuillets de graphène, nanotubes de carbone (NTCS)) qui sont dotés d’une conductivité électronique élevée. J’intègre ces nanomatériaux par des procédés de micro/nanofabrication sur des électrodes de travail dans des cellules microfluidiques. J'ai démontré qu'en combinant un haut flux et un transducteur en NTCs qu'il est possible d'augmenter de 3 ordres de grandeur la sensibilité de détection dans la chambre fluidique (article soumis à LoC). J'ai aussi étudié par spectroscopîe d'impédance la nature du transfert des charges entre l'électrolyte et la graphène (2ème article en cours de rédaction). Mon doctorat a donc validé une technologie innovante pour les biocapteurs miniaturisés à ADN, avec un fort potentiel de valorisation, dans le domaine de la santé et de l’environnement. / As part of my thesis under joint supervision between UPS and Sfax Universities which started in January 2013, I developed ultra-sensitive biochips for the detection of infectious diseases (Tuberculosis and Hepatitis C). This subject, which combines basic and applied research for the early detection of diseases, aimed rapid detection of highly diluted chemical species such as DNA in a biological fluid. This detection is done electrochemically, through the use of innovative carbon nanomaterials (graphene layers, carbon nanotubes (NTCS)) which are provided with a high electron conductivity. I have integrated these nanomaterials by micro / nano-fabrication processes on working electrodes in microfluidic cells. I demonstrated that by combining a high flow and a that CNTs as transducer, the sensitivity of detection in the fluid chamber can be increased by 3 orders of magnitude (Article submitted to Lab on Chip journal). I also studied by impedance spectroscopy the nature of the charge transfer between the electrolyte and the graphene (2nd article being drafted). My PhD has validated an innovative technology for miniaturized biosensors DNA, with a strong development potential in the field of health and the environment.
|
3 |
Développement d'une stratégie d'adressage sur or par chimie "click" électro-catalysée : application à la détection sans marquage de biomoléculesRipert, Micaël 06 November 2013 (has links) (PDF)
La réalisation de microsystèmes de multidétection et sans marquage pour la reconnaissance de biomolécules est d'un intérêt fondamental pour la réalisation de tests rapides dédiés au diagnostic biologique. Ces développements nécessitent une méthode d'adressage des sondes de capture sur une plateforme multiplexée associée à une méthode d'analyse sensible. Dans cette étude, la méthode de détection choisie pour les tests développés sur la puce est la voltampérométrie cyclique, et le férrocène a été utilisé pour la modification de sondes oligonucléotidiques de type tige-boucle. Une stratégie d'électroadressage a été développée sur surface d'or. Elle a été réalisée via chimie " click " entre un alcyne et un azoture. Cette réaction peut être électro-catalysée en maintenant le catalyseur cuivre sous sa forme active par l'application d'un potentiel à l'électrode. Une première entité chimique de petite taille, constituée de deux groupements dithiol phosphate et d'un groupement hexynyle a été synthétisé par synthèse supportée et greffée sur électrode d'or. Par la suite, différents éléments ont été immobilisés par chimie " click ". Un dérivé ferrocène porteur d'une fonction azoture a été utilisé pour la détermination des conditions optimales de cette chimie. Puis, cette méthode a été exploitée pour l'immobilisation de nanoparticules fluorescentes et de protéines par l'intermédiaire de la formation du complexe biotine/streptavidine. Enfin, cette méthode a permis l'électroadressage de sondes de capture oligonucléotidiques de type tige-boucle, modifiées par des ferrocènes. Des tests d'hybridation ADN ont été menés en milieu complexe avec une limite de détection déterminée à 100fM
|
4 |
Electrochemical sensors of environmental pollutants based on carbon electrodes modified by ordered mesoporous silica / Capteurs électrochimiques de polluants environnementaux à base d'électrodes de carbone modifiées par de la silice mésoporeuse organiséeNasir, Tauqir 09 July 2018 (has links)
Dans cette thèse, nous présentons la détection électrochimique des herbicides, c'est-à-dire le paraquat et l'isoproturon dans des échantillons aqueux. Leur utilisation intensive est une source de contamination de l'environnement et leur toxicité constitue une menace pour la santé. La détection électrochimique est une technique prometteuse et avantageuse par rapport aux méthodes de détection conventionnelles en raison de ses propriétés telles que l'analyse rapide, la facilité d'utilisation, la rentabilité et la sensibilité élevée résultant de la modification de l'électrode de travail. Ici, nous avons modifié les électrodes modifiées avec des films minces de silice mésoporeuse pour agir comme capteurs d'herbicide. Ces électrodes ont été modifiées par un processus d'auto-assemblage assisté par électrochimie, un processus bien établi pour la modification des électrodes par notre groupe. Dans la première partie, l'adhérence du film de silice mésoporeux aux électrodes de carbone a été améliorée à l'aide d'une amine primaire qui a agi comme colle moléculaire pour une meilleure fixation de ces films à la surface des électrodes. Dans la partie suivante, ces électrodes modifiées ont été utilisées pour la détection électrochimique des herbicides susmentionnés. Les électrodes modifiées ont montré une sensibilité accrue et une limite de détection basse par rapport aux électrodes non modifiées. L'effet des différents paramètres de la solution ainsi que l'épaisseur du film et la géométrie de l'électrode ont également été étudiés et ont un impact critique sur la sensibilité du système / In this thesis, we present the electrochemical detection of herbicides i.e. paraquat and isoproturon in aqueous samples. These herbicides are used worldwide extensively for weed control in different crops. Their intensive use is a source of environmental contamination and their toxicity is a threat to Human health. Electrochemical sensing is a promising and advantageous technique as compared to conventional detection methods due to its properties such as rapid analysis, ease of operation, cost effectiveness and high sensitivity as a result of working electrode modification. Here, we modified electrodes modified with mesoporous silica thin films to act as herbicide sensors. These electrodes were modified by electrochemically assisted self-assembly process, a well-established process for electrode modification by our group. In the first part adhesion of mesoporous silica film at carbon electrodes was improved with the help of a primary amine which acted as molecular glue for better attachment of these films at electrodes surface. In the next part these modified electrodes were used for electrochemical detection of above stated herbicides. Modified electrodes showed enhanced sensitivity and low limit of detection as compared to unmodified ones. Effect of different solution parameters as well as film thickness and electrode geometry was also studied and found to have critical impact on sensitivity of the system
|
5 |
Développement d'une stratégie d'adressage sur or par chimie "click" électro-catalysée : application à la détection sans marquage de biomolécules / Addressing strategy on gold by electrocatalyzed « click » chemistry : label-free detection of biomoleculesRipert, Micaël 06 November 2013 (has links)
La réalisation de microsystèmes de multidétection et sans marquage pour la reconnaissance de biomolécules est d'un intérêt fondamental pour la réalisation de tests rapides dédiés au diagnostic biologique. Ces développements nécessitent une méthode d'adressage des sondes de capture sur une plateforme multiplexée associée à une méthode d'analyse sensible. Dans cette étude, la méthode de détection choisie pour les tests développés sur la puce est la voltampérométrie cyclique, et le férrocène a été utilisé pour la modification de sondes oligonucléotidiques de type tige-boucle. Une stratégie d'électroadressage a été développée sur surface d'or. Elle a été réalisée via chimie « click » entre un alcyne et un azoture. Cette réaction peut être électro-catalysée en maintenant le catalyseur cuivre sous sa forme active par l'application d'un potentiel à l'électrode. Une première entité chimique de petite taille, constituée de deux groupements dithiol phosphate et d'un groupement hexynyle a été synthétisé par synthèse supportée et greffée sur électrode d'or. Par la suite, différents éléments ont été immobilisés par chimie « click ». Un dérivé ferrocène porteur d'une fonction azoture a été utilisé pour la détermination des conditions optimales de cette chimie. Puis, cette méthode a été exploitée pour l'immobilisation de nanoparticules fluorescentes et de protéines par l'intermédiaire de la formation du complexe biotine/streptavidine. Enfin, cette méthode a permis l'électroadressage de sondes de capture oligonucléotidiques de type tige-boucle, modifiées par des ferrocènes. Des tests d'hybridation ADN ont été menés en milieu complexe avec une limite de détection déterminée à 100fM / This production of microsystem for label-free multi detection of biomolecules is fundamental for the realization of rapid tests dedicated to laboratory diagnosis. A viable method is requires to both address capture probes and to be associates with a sensitive analysis on multiplexed platform. In this study, the method chosen for detection on electrode is cyclic voltammetry, and ferrocene was used to modify stem-loop oligonucleotides. A strategy was developed for the electroadressing of probes on gold surface. It is performed through chemistry “click” between an alkyne and an azide. This reaction may be catalyzed by maintaining the correct potential to the electrode to form an active copper oxidation state on the surface. A first small chemical entity, containing two phosphate dithiol moieties and a hexynyl moiety was synthesized by supported chemistry and grafted on gold electrode. Thereafter, various elements were immobilized by chemistry “click”. Ferrocene derivative carrying an azide function was used to determine the optimal conditions for this chemistry. Then, this method has been exploited for the immobilization of proteins and fluorescent nanoparticles via the formation of biotin/streptavidin complex. Finally, this method allowed to electroaddress stem-loop oligonucleotids, designed as capture probes, modified by ferrocene. DNA hybridization tests were conducted in complex environments with a detection limit determined at 100 fM
|
6 |
Development of nanomaterials for electrochemical detection applied in affinity biosensors for in-vitro analysis / Développement des nanomatériaux pour la détection électrochimique appliquée dans des biocapteurs d'affinités pour des analyses in vitroMiodek, Anna 11 December 2013 (has links)
Le projet de ma thèse a consisté en la mise au point de biomatériaux capables d'agir en tant que capteurs moléculaires pour la construction de biocapteurs d'affinité tels que des immunocapteurs, aptacapteurs et capteurs d'ADN, basés sur la lecture électrochimique. Les biocapteurs électrochimiques deviennent une technique intéressante pour l'identification des biomolécules en raison de possibilités de miniaturisation, de faible coût et de la lecture directe des signaux électriques. Toutefois, le choix d'un transducteur, qui permet d'obtenir un signal électrochimique, est crucial dans la construction du biocapteur. Au cours de ma thèse, j'ai eu l'occasion de comparer l'efficacité de différents matériaux conductrices tels que les conducteurs polymères (polypyrrole), les nanotubes de carbone et des nanoparticules d'or. Pour obtenir une réponse électrochimique intense, j'ai associé ces plateformes avec un marqueur redox-ferrocène. Les biocapteurs ont été basés sur la détection directe, généralement avec un «signal off» (diminution de la réponse électrochimique lors de la détection). J'ai travaillé sur différents types de reconnaissance biologique comme anticorps/antigène, aptamer/protéine, sonde ADN/ADN cible. Ces biocapteurs sont particulièrement intéressants dans le domaine de la biologie et de la santé publique. Au début je me suis intéressée à la nouvelle protéine impliquée dans le virus de la grippe et démontrée son évolution dans le cycle viral avec l'objectif de développer de nouveaux médicaments pour cette maladie ainsi que de nouveaux outils de détection. J'ai construit ces biocapteurs basés sur polymère conductrice-polypyrrole associé avec le marqueur redox, ferrocène pour l'immobilisation des anticorps spécifique pour les protéines impliquées dans le virus de la grippe. De nouveaux biorécepteurs - aptamères et des techniques électrochimiques ont été ensuite développés pour concevoir un système sensible capable de détecter la protéine prion cellulaire au niveau pM dans les échantillons de plasma humaine. Les aptamères sont associés sur la plateforme composée de nanotubes de carbone, conjuguées avec des dendrimères poly(amidoamine) PAMAM. Les composites combinent les performances électriques de nanotubes mais permet simultanément l'attachement de nombreux biomolécules, en raison des nombreux groupes amines portant par des dendrimères. Puis j'étais aussi intéressé par la détection de l'ADN par le développement de biocapteurs à base de nanotubes de carbone pour deux maladies infectieuses telles que l'hépatite C avec des cibles d'ADN synthétiques et l'ADN de M. tuberculosis provenant d'échantillons PCR. Ces exemples ont été utilisés pour démontrer que le capteur d'ADN pourrait être généralisé à toutes les maladies infectieuses et utilisé dans le système «point of care». Des études précédentes ont consisté dans le dépôt de nanotubes de carbone sur la surface par adsorption et j'ai trouvé que c'était problématique en termes de reproductibilité. Alors, j'ai utilisé polypyrrole comme une matrice pour l'association des nanotubes de carbone. Cette méthode semble être la plus efficace et a permis de combiner les propriétés des nanotubes avec celles de polypyrrole conducteurs. Au cours de ma thèse, j'ai démontré que les capteurs électrochimiques d'affinité à base de polymères conducteurs et les nanomatériaux peuvent être appliqués dans différents domaines concernant les problèmes de santé. Ces biocapteurs sont prêts pour être intégrés dans les microsystèmes ainsi que dans les systèmes «point of care». / The project of my thesis consisted on the development of biomaterials that are able to act as molecular transducers for the construction of affinity biosensors such as immunosensors, aptasensors and DNA sensors, based on electrochemical reading. Electrochemical biosensors become an attractive technique for the identification of biomolecules due to miniaturization possibilities, low cost and direct lecture of electric signals. However the choice of a transducer, which allows obtaining electrochemical signal, is crucial in biosensor construction. During my thesis I had the opportunity to compare the efficacy of different conducting materials such as conducting polymers (polypyrrole), carbon nanotubes. To obtain an intense electrochemical response, I associated these platforms with a redox marker – ferrocene. The biosensors which I constructed were based on direct detection, usually with “signal off” (decrease in electrochemical response during detection). I worked on different types of biological recognition such as antibody/antigen, aptamer/protein, DNA probe/DNA target. These biosensors are especially attractive in the biological field and public health. First, I was interested in the new protein involved in Influenza virus and demonstrated its evolution in viral cycle with the objective to develop new drugs for this disease as well as new tools for detection. I constructed biosensors based on conducting polypyrrole which was studied extensively in our group. I used this polypyrrole matrix associated with redox marker, ferrocene for immobilization of antibody specific for protein involved in Influenza virus. By this approach I demonstrate that electrochemical biosensors can become effective tools in the daily laboratory work, especially useful for biologists who are often limited by commercially available methods. Then new bioreceptors - aptamers and electrochemical techniques have been developed to design a sensitive system able to detect cellular prion protein at pM level in plasma samples. Aptamers were associated on the platform composed of polypyrrole or carbon nanotubes conjugated with dendrimers poly(amidoamine) PAMAM. Composite combines the high electrical performance of transducers but simultaneously allows attachment of high number of biomolecules, due to numerous amine groups bearing by dendrimers. I was also interested in DNA detection and in the development of biosensors based on carbon nanotubes for two infectious diseases like hepatitis C with synthetic DNA targets and M. tuberculosis DNA from PCR samples. Such examples were used to demonstrate that DNA sensor could be generalised to all infectious diseases and used in point-of-care system. My previous studies consisted on the deposition of carbon nanotubes on the surface by adsorption and I found that it was problematic in terms of reproducibility, so important in biosensor construction. I used polypyrrole as a matrix for carbon nanotubes association. This method seems to be effective and allowed combination of nanotubes properties with those of conducting polypyrrole. During my thesis I demonstrated that electrochemical affinity sensors based on conducting polymers and nanomaterials can be applied in different fields concerning health problems. These biosensors are ready for integration in microsystems for application as analytical tools as well as in point-of-care systems.
|
Page generated in 0.1089 seconds