• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Materialintegration von Halbleitern mit magnetischen Werkstoffen

Schippan, Frank 01 December 2000 (has links)
Die vorliegende Arbeit befaßt sich mit der Herstellung und Untersuchung magnetischer MnAs-Schichten auf halbleitenden GaAs-Substraten. Die einkristallinen MnAs-Schichten wurden unter Verwendung der Molekularstrahlepitaxie auf GaAs abgeschieden. Die detaillierte Darstellung des MnAs-Wachstums beschreibt den Einfluß der Herstellungsbedingungen auf die strukturelle Qualität. Eine systematische Analyse der MnAs-Oberflächenstruktur resultiert in einem Phasendiagramm der Rekonstruktionen. Die Keimbildung von MnAs während des Wachstums der ersten Monolagen wird anhand der Ergebnisse einer in-situ-Analyse diskutiert. Dabei kamen komplementär die Reflexionselektronenbeugung und die Reflexionsdifferenzspektroskopie zum Einsatz. Die strukturellen Eigenschaften der MnAs-Schichten wurden mittels Transmissionselektronenmikroskopie analysiert. Eingehende Studien der Grenzfläche zeigen zwei richtungsabhängige Mechanismen des Abbaus der Gitterfehlpassung in dem Heteroepitaxiesystem MnAs/GaAs. Die Diskussion der magnetischen Eigenschaften erfolgte sowohl auf makroskopischer als auch auf mikroskopischer Skala. Die durch Magnetometrie erhaltenen Resultate liefern wichtige Erkenntnisse zum Magnetismus dünner Schichten. Untersuchungen der magnetischen Domänen in MnAs mittels magnetischer Kraftmikroskopie zeigen das komplizierte Wechselspiel zwischen Oberflächentopographie und magnetischer Struktur. Die Abbildung der magnetischen Domänen als Funktion des angelegten magnetischen Feldes gibt Aufschluß über das Magnetisierungsverhalten auf mikroskopischer Skala. / This work investigates the growth and characterization of magnetic MnAs layers on semi-insulating GaAs substrates. The single-crystalline MnAs layers are deposited on GaAs by molecular beam epitaxt. A detailed analysis of the MnAs growth reveals the influence of the growth conditions on the structural quality of the layers. A phase diagram showing four stoichiometry dependent reconstructions is obtained by a systematic analysis of the MnAs surface structure. The nucleation of MnAs during growth of the first monolayers is examined by in-situ reflection electron diffraction and reflectance difference spectroscopy measurements. The structural properties of the MnAs layers are analyzed by transmission electron microscopy. It is found that the lattice mismatch is accommodated at the MnAs/GaAs interface by a coincidence lattice along one direction and by misfit dislocation along the perpendicular direction. The discussion of the magnetic properties covers the macroscopic as well as the microscopic scales. Magnetometry results provide important knowledge about thin film magnetism in MnAs layers. Extensive magnetic force microscopy investigations of the magnetic domains in MnAs illustrate the complicated relationship between surface topography and magnetic structure. Imaging of magnetic domains as a function of the applied magnetic field gives new insights on magnetization behavior on a microscopic scale. The MnAs phase transition at 43° C is investigated by combined X-ray diffraction and magnetization measurements. The MnAs structure changes from the ferromagnetic to the paramagnetic state, accompanied by a crystal structure change from hexagonal to orthorhombic. A detailed analysis of the phase transition provides important information concerning crystal growth and allows optimization of the fabrication conditions.
2

Zur Analyse des Schaltverhaltens dünner magnetischer Schichten in leitender Umgebung mit einem Beitrag zur Integration der Maxwellschen Gleichungen unter der Anwendung der mehrdimensionalen Fouriertransformation

Gelfert, Karl-Christoph 24 February 2021 (has links)
Die Maxwellschen Gleichungen werden bei der Analyse elektromagnetischer Felder an einem Raumpunkt in Abhängigkeit von den Feldquellen (z.B. Ladungen, Ströme) und beliebiger Anordnung von Gebieten mit Materie unterschiedlicher elektromagnetischer Eigenschaften , für eigene oder auch im Vergleich mit Beispielen anderer Autoren, analytisch oder numerisch iterativ gelöst. Ein eigenes Beispiel ist das Schaltverhalten der Magnetisierung dünner magnetischer (NiFe) Schichten zwischen leitenden (Cu) Schichten, wenn die umschaltenden Magnetfelder durch (n-Sekunden) Impulströme in darüberliegenden Streifenleitern (Cu) erzeugt werden. Verfahren hierzu werden angegeben ebenso wie FORTRAN-Quellprogramme zur näherungsweisen numerischen Lösung des Gesamtsystems der Maxwellschen Gleichungen. Solche Verfahren sind: - Einführung der Strecke, die das Licht im Vakuum in der Zeit t zurücklegt als vierte (imaginäre) Koordinate, - Umschreiben der Maxwellschen Gleichungen durch Verwendung der Tensoralgebra in Koordinatenschreibweise. Dadurch werden nur Skalare (Zahlen) miteinander verknüpft. Es treten keine komplizierten Verknüpfungen von Vektoren auf (Nabla,Rotor,Divergenz,Kreuzprodukt usw.). - Anwendung der vierdimensionalen Fouriertranformation. Ergebnis ist auch ein Vorschlag zur Dicke der leitenden Schichten (größer als die Skin-Eindringtiefe) über der dünnen magnetischen Schicht und die Anordnung der Ansteuerleitungen für nichtzerstörendes Lesen der in der magnetischen Schicht gespeicherten Information.:1. Einleitung 4 1.1. Zum Schaltverhalten ebener dünner magnetischer Schichten 4 1.2. Zur Integration der Maxwellschen Gleichungen 5 1.3. Zur in der Arbeit verwendeten Schreibweise 7 2. Physikalische Grundlagen zur Magnetisierungsdynamik dünner magnetischer Schichten (DMS) 11 2.1. Magnetisierungsänderung in DMS 11 2.1.1. Wandverschiebungsprozesse 11 2.1.2. Kohärente Spin-Rotation (KSR) 12 2.1.3. Nichtkohärente Spin-Rotation (NKSR) 13 2.2. Ummagnetisierung von DMS durch äußere Felder 15 2.2.1. DMS im Eindomänen (ED) –Zustand 15 2.2.1.1. Quasistatische Magnetisierungsänderung 15 2.2.1.2. Dynamisches Verhalten der Magnetisierungsänderung unter dem Einfluß von in der DMS homogenen Feldern 25 2.2.1.2.1. Die Bewegungsgleichung 25 2.2.1.2.2. Näherung für geringe Energiedichte 29 2.2.1.2.3. Viskose-Fluß-Approximation 34 2.2.1.2.4. Näherungslösung nach der nichtlinearen Schwingungstheorie 40 2.3. Zusammenfassung 42 3. Vorbemerkungen zur Analyse der Magnetisierungsdynamik bei DMS in leitender Umgebung 43 4. Ein Beitrag zur Lösung der Maxwellschen Gleichngen (MWG) 44 4.1. Maxwellsche Gleichungen (MWG) im dreidimensionalen Raum 45 4.2. Formulierung der MWG im vierdimensionalen Raum 47 4.2.1. Bemerkung zu den Rand- und Stetigkeitsbedingungen bei der Integration der MWG 55 4.2.2. Die Greensche Funktion (Einflußfunktion) 59 4.3. Anwendung einer Funktionaltransformation 62 4.3.1. Mehrdimensionale Fouriertransformation 64 4.3.2. Vierdimensionale Fouriertransformation der MWG 70 4.3.2.1. Fundamentallösungen, Eindeutigkeit 72 4.3.2.2. Die Helmholtzgleichung und das Prinzip der Grenzabsorption 75 4.3.2.3. Anmerkung zu den Resolventen der Fouriertransformierten Elektromagnetischer Felder 79 4.3.2.4. Lösungsbeispiele 86 4.3.2.4.1. Lösungen der Wellengleichung 86 4.3.2.4.2. Ableitungen verallgemeinerter Funktionen und Greensche Formel 89 4.3.2.4.3. Potential von Doppelleitern 92 4.3.2.4.4. Potential einer Punktladung bei inhomogenem Dielektrikum 93 5. Das DMS-Problem bei geschichteten Medien 97 5.1. Das Magnetfeld in der Schichtebene für eine DMS zwischen leitenden Ebenen 98 5.1.1. Das Magnetfeld in der Schichtebene bei symmetrischer Leiteranordnung 102 5.1.2. Die Einflußfunktion des DMS-Problems 105 5.2. Magnetisierungsdynamik bei inhomogenen Feldern 112 5.2.1. Statische Magnetisierungsänderung bei Entmagnetisierungs- und Streufeldern 114 5.2.1.1. Statisches Magnetfeld in der DMS-Ebene 116 5.2.1.2. Magnetisierungsverteilung unter dem Einfluß inhomogener Felder 120 5.2.1.3. Magnetisierungsdynamik bei inhomogenen Feldern unter Berücksichtigung der Bewegungsgleichung 131 6. Programmkurzbeschreibungen P 1 6.1. Allgemeine Programme P 1 6.1.1. Serviceprogramme P 1 6.1.1.1. Verarbeitung externer Matrizen MPACK P P 1 6.1.1.2. Niveauliniendruck CONPRT PPP1 1 6.1.2. Schnelle Fouriertransformation SFTF P 1 6.1.3. Vierdimensionale Fouriertransformation SMEFT4 P 3 6.2. Programme zum DMS-Problem P 4 6.2.1. Statische Magnetisierungsverteilung bei inhomogenen Feldern HDMS P 4 6.2.2. Sprungantwort des Magnetfeldes in der Schichtebene für einen Magnetisierungssprung. HDMGW Berechnung des Wirbelfeldes und Gesamtfeldes P 5 6.2.3. Magnetisierungsdynamik einer DMS zwischen leitenden Ebenen. EDMTES P 6 Berechnung des Magnetfeldes MDYN,MTENS 6.3. Programme zur genäherten Integration der Maxwellschen Gleichungen über die vierdimensionale schnelle Fourier-Transformation MAWGES P 8 6.3.1. Elektrisches Feld MAW (EPRT) P 10 6.3.2. Magnetisches Feld MAW (BHPRT) P 11 6.3.3. Stromdichteverteilung MAW (SDVPRT) P 12 7. Anhang A1.1 8. FORTRAN-Programm FP 1 9. Literaturverzeichnis L 1

Page generated in 0.1248 seconds