1 |
Etude structurale et fonctionnelle de DprA et de ses partenaires au cours de la transformation génétique naturelle / Structural and functional studies of DprA and its partners involved in the natural genetic transformationLisboa, Johnny 18 December 2013 (has links)
La transformation génétique naturelle est un mode de transfert horizontal de gènes chez les bactéries, qui contribue au maintien et à l'évolution de leurs génomes. C’est un mécanisme clé pour l’adaptation des bactéries, qui pourrait être responsable de la transmission des résistances aux antibiotiques observée en clinique chez certaines espèces pathogènes (S. pneumoniae, H. pylori,…). La transformation naturelle s’effectue par l’internalisation d’ADN exogène à travers la membrane, puis par sa prise en charge jusqu’à son intégration dans le chromosome bactérien par recombinaison homologue. Le processus de prise en charge fait intervenir la protéine DprA, très conservée dans le monde bactérien, impliquée dans la protection de l’ADN entrant contre les nucléases, et dans le recrutement de la recombinase universelle RecA sur l’ADNsb. DprA joue donc un rôle majeur et a récemment été décrite comme étant impliquée dans d’autres aspects de la transformation génétique naturelle, comme la fermeture de la compétence via une interaction directe avec le régulateur de réponse ComE, ou la levée de la barrière du système de restriction-modification afin de faciliter la transformation. Chez H. pylori, DprA est en opéron avec DprB, suggérant l’implication de ces 2 protéines dans une même voie et une interaction directe entre elles. DprA apparaît donc comme étant au cœur d’un véritable réseau d’interaction, protéique et nucléique. / The natural genetic transformation is a mode of horizontal gene transfer that contributes to the maintenance and to the evolution of the genomes in bacteria. It is a key mechanism for their adaptation which could be responsible for the transmission of antibiotic resistances observed clinically for some pathogenic species (S. pneumoniae, H. pylori...). Natural transformation is performed by internalizing exogenous DNA followed by its processing and its integration into the bacterial chromosome by homologous recombination. The DNA processing involves the highly conserved DprA protein for the protection of the incoming DNA against nucleases and the recruitment of the universal recombinase RecA on ssDNA. DprA plays a key role and has recently been suggested to be involved in other aspects of the natural genetic transformation, such as the shut-off of the competence via a direct interaction with the response regulator ComE, or removal of the restriction-modification barrier system in order to facilitate the processing. In H. pylori, the dprA gene is in operon with dprB, whose function is unknown, suggesting their involvement in the same pathway and their likely direct interaction. DprA appears to be central in protein/nucleic acid interactions network.
|
2 |
1-deoxy-D-xylulose-5-phosphate Synthase (DXS) Mechanistic Study and its Implication in the Development of Novel Antibiotics and AntimalarialsHanda, Sumit 01 January 2012 (has links)
Isoprenoids are the largest family of biologically active compounds, synthesized by five carbon subunits namely isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). For long time the mevalonate-dependent (MVA) pathway has been considered as the sole source of IPP and DMAPP, until recently a new non-mevalonte dependent (NMVA) pathway was discovered. This new pathway utilizes entirely different set of enzymes for isoprenoids synthesis and don't have any homologues in humans. NMVA pathway is the only source of isoprenoids for certain eubacteria, parasite and plants. Absence of the NMVA pathway in higher organisms has opened a new platform for the development of novel antibiotics and antimalarials.
1-deoxy-D-xylulose-5-phosphate synthase (DXS), the first enzyme in NMVA pathway has been reported as the rate limiting enzyme in the synthesis of IPP and DMAPP and has been the center of interest for inhibitor development. Reaction mechanism of thiamine pyrophosphate (TPP) and Mg2+ dependent DXS enzyme has been studied in this report. Using steady state kinetics analysis, product inhibition and dead end inhibitor, the mechanism of substrate (pyruvate and D-glyceraldehyde-3-phosphate) addition was studied. Due to different domain organization in DXS as compared to theother TPP dependent enzyme, the mechanism of addition was found to be random sequential rather than ping-pong mechanism.
Based on bioinformatics tool and in vitro studies it has been established that NMVA exists in all the plasmodium species, thus making the enzymes involved in NMVA as an alluring target for new antimalarial drugs. All the plasmodium species and other member of the phylum apicomplexa harbor apicoplast an organelle which is homologous to the chloroplast of plants and algae. All the enzymes from NMVA pathway translocate to apicoplast from nucleus through a secretory pathway using signaling and transit peptide. In this study DXS from P. vivax has been cloned and expressed in E. coli using genomic DNA and codon optimized synthetic DNA as a source. Expression of full length DXS with signal and transit peptide as well as mature protein without these peptide using serial deletion has been studied. Kinetic parameters of P.vivax DXS have been calculated and found to be comparable to the DXS from other species.
|
Page generated in 0.0323 seconds