1 |
Multi-port DC-DC Power Converter for Renewable Energy ApplicationChou, Hung-Ming 16 January 2010 (has links)
In recent years, there has been lots of emphasis put on the development of renewable
energy. While considerable improvement on renewable energy has been made,
there are some inherent limitations for these renewable energies. For example, for
solar and wind power, there is an intermittent nature. For the fuel cell, the dynamics
of electro-chemical reaction is quite slow compared to the electric load. This will
not be acceptable for modern electric application, which requires constant voltage of
constant frequency.
This work proposed and evaluated a new power circuit that can deal with the
problem of the intermittent nature and slow response of the renewable energy.
The proposed circuit integrates different renewable energy sources as well as
energy storage. By integrating renewable energy sources with statistical tendency to
compensate each other, the effect of the intermittent nature can be greatly reduced.
This integration will increase the reliability and utilization of the overall system.
Moreover, the integration of energy storage solves the problem of the slow response
of renewable energy. It can provide the extra energy required by load or absorb the
excessive energy provided by the energy sources, greatly improving the dynamics of
overall system.
To better understand the proposed circuit, "Dual Active Bridge" and "Triple
Active Bridge" were reviewed first. The operation principles and the modeling were presented. Analysis and design of the overall system were discussed. Controller
design and stability issues were investigated. Furthermore, the function of the central
controller was explained. In the end, different simulations were made and discussed.
Results from the simulations showed that the proposed multi-port DC-DC power
converter had satisfactory performance under different scenarios encountered in practical
renewable energy application. The proposed circuit is an effective solution to the
problem due to the intermittent nature and slow response of the renewable energy.
|
2 |
Modeling And Digital Control Of High Frequency Dc-dc Power ConvertersWen, Yangyang 01 January 2007 (has links)
The power requirements for leading edge digital integrated circuits have become increasingly demanding. Power converter systems must be faster, more flexible, more precisely controllable and easily monitored. Meanwhile, in addition to control process, the new functions such as power sequencing, communication with other systems, voltage dynamic programming,load line specifications, phase current balance, protection, power status monitoring and system diagnosis are going into today's power supply systems. Digital controllers, compared withanalog controllers, are in a favorable position to provide basic feedback control as well as those power management functions with lower cost and great flexibility. The dissertation gives an overview of digital controlled power supply systems bycomparing with conventional analog controlled power systems in term of system architecture,modeling methods, and design approaches. In addition, digital power management, as one of the most valuable and "cheap" function, is introduced in Chapter 2. Based on a leading-edge digital controller product, Chapter 3 focuses on digital PID compensator design methodologies, design issues, and optimization and development of digital controlled single-phase point-of-load (POL)dc-dc converter. Nonlinear control is another valuable advantage of digital controllers over analogcontrollers. Based on the modeling of an isolated half-bridge dc-dc converter, a nonlinear control method is proposed in Chapter 4. Nonlinear adaptive PID compensation scheme is implemented based on digital controller Si8250. The variable PID coefficient during transients improves power system's transient response and thus output capacitance can be reduced to save cost. In Chapter 5, another nonlinear compensation algorithm is proposed for asymmetric flybackforward half bridge dc-dc converter to reduce the system loop gain's dependence on the input voltage, and improve the system's dynamic response at high input line. In Chapter 6, a unified pulse width modulation (PWM) scheme is proposed to extend the duty-cycle-shift (DCS) control, where PWM pattern is adaptively generated according to the input voltage level, such that the power converter's voltage stress are reduced and efficiency is improved. With the great flexibility of digital PWM modulation offered by the digital controller Si8250, the proposed control scheme is implemented and verified. Conclusion of the dissertation work and suggestions for future work in related directions are given in final Chapter.
|
3 |
Modélisaton et conception de transformateurs planar pour convertisseur de puissance DC/DC embarqué / Modeling and design of planar trasnformers for embedded DC/DC power converterNgoua teu Magambo, Jean-Sylvio 13 December 2017 (has links)
Ces travaux de thèse s’inscrivent dans la problématique de développement de transformateurs planar pour l’intégration de puissance, dans le contexte de l’avion plus électrique (More Electric Aircraft – MEA) où les contraintes de volume et de poids sont primordiales. Les composants magnétiques restent en effet un frein à l’intégration des systèmes d’Electronique de Puissance et les composants planar (transformateurs et inductances) offrent une alternative intéressante aux composants bobinés pour la réduction de la taille des convertisseurs.Dans ce manuscrit, des méthodes, un outil de dimensionnement et des prototypes de transformateurs planar (2 et 3 enroulements) en technologie feuillard et PCB sont développés pour des applications de convertisseur DC/DC aéronautique. Dans un premier temps, les modèles permettant le calcul des pertes, l'estimation de l'élévation de température et le calcul de l’inductance de fuite sont présentés et comparés afin de concevoir des outils de calculs pour la conception. Dans un deuxième temps, il est montré que la modification de la forme des angles des spires rectangulaires permet de réduire significativement les pertes cuivre HF. Sur la base de ces outils et résultats, des prototypes de transformateurs planar à 3 enroulements en PCB multicouches sont développés. De nombreux prototypes sont caractérisés et valident les modèles de dimensionnement proposés. Enfin, l’un de ces prototypes est intégré et testé dans un convertisseur de puissance DC/DC de 3.75kW mettant en évidence les gains obtenus. / These thesis works deal with the issue of the planar transformers development for power integration, in the context of the More Electric Aircraft (MEA), where the constraints of volume and weight are paramount. Magnetic components remain a hindrance to the integration of Power Electronics systems and planar components (transformers and inductors) offer an interesting alternative to wound components for reducing the size of converters.In these works, methods, a sizing tool and prototypes of planar transformers (2 and 3 windings) in strip and PCB technology are developed for aeronautical DC / DC converter applications. Firstly, the models allowing the calculation of the losses, the estimation of the temperature rise and the calculation of the leakage inductance are presented and compared in order to design calculation tools for engineers. In a second step, it is shown that the modification of the shape of the angles of rectangular turns makes it possible to significantly reduce the HF copper losses.Based on these tools and results, prototypes of 3-windings planar transformers in multilayer PCBs are developed. Many prototypes are characterized and validate the proposed designing models. Finally, one of these prototypes is integrated and tested in a DC / DC power converter of 3.75kW highlighting the gains obtained.
|
4 |
Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique / Design and development of an isolated multicell DC/DC power converter for aeronautical applicationsBrandelero, Julio Cezar 28 May 2015 (has links)
L’électricité prend une place de plus en plus importante dans les systèmes énergétiques embarqués. L’électricité est une forme d’énergie très malléable, facile à transporter et réglable ou transformable avec un très faible taux de pertes. L’énergie électrique, associée à des convertisseurs statiques, est plus facile à maîtriser que, par exemple, l’énergie hydraulique et/ou pneumatique, permettant un réglage plus fin et une réduction des coûts de maintenance. L’évolution de la puissance dans les modèles avioniques est marquante. Avec le nombre croissant de charges électroniques, un avion plus électrique avec un réseau à courant alternatif inclurait un grand nombre de redresseurs AC/DC qui devront respecter les normes de qualité secteur. Une solution pour la réduction de la masse serait de préférer un réseau HVDC (High Voltage DC Bus). Sur les futurs modèles avioniques plus électriques, les concepteurs envisageront des conversions HVDC/DC à partir de l’unité appelée BBCU (Buck Boost Converter Unit). Dans ce cas d’étude, un réseau de distribution en tension continue (±270Vdc) est connecté à un réseau de sécurité basse tension (28Vdc) avec un échange bidirectionnel de puissance pouvant atteindre 10kW. Le convertisseur statique assurant cette liaison représente de nouveaux défis pour l’électronique de puissance en termes de fiabilité, sûreté, détection de panne, rendement et réduction de masse et de coût. Le dimensionnement du convertisseur doit prendre en compte une conception optimale, en aéronautique ce critère est la masse. Dans le processus de dimensionnement et d’optimisation du convertisseur, il est donc impératif de prendre en compte trois facteurs principaux : 1) l’évolution des topologies de conversion, 2) l’évolution des composants actifs et passifs et 3) l’intégration de puissance. La réunion de ces trois facteurs permettra ainsi la miniaturisation des convertisseurs statiques. Dans un premier temps, nous préciserons la démarche adoptée pour le dimensionnement d’un convertisseur en prenant en compte : les topologies actives, les filtres différentiels et le système de refroidissement. Les différents éléments qui composent le convertisseur sont décrits dans un langage informatique orienté objet. Des facteurs de performances seront également introduits afin de faciliter le choix des semi-conducteurs, des condensateurs et du dissipateur pour un convertisseur statique. Dans un deuxième temps, nous présenterons le fonctionnement d’une topologie multicellulaire DC/DC, isolée pour l’application proposée. Nous présenterons les avantages du couplage de différentes phases de ce convertisseur. Nous introduirons les différentes associations des cellules et leurs avantages, possibles grâce à l’isolement, comme la mise en série et en parallèle. Puisque la caractérisation des pertes des semi-conducteurs est essentielle pour le dimensionnement du convertisseur statique, nous proposerons deux approches : un modèle de simulation relativement simple et paramétré à l’aide de seules notices constructeurs ; et une méthode de mesure des pertes dans les semi-conducteurs qui est à la fois précise et compatible avec les composants les plus rapides. En ce qui concerne les composants magnétiques, une surface de réponse des matériaux ferrites sera présentée. Nous allons décrire, par le biais analytique et de simulation, des modèles pour la détermination du champ magnétique à l’intérieur du noyau et des ondulations de courant engendrés. Finalement, en profitant des modèles et des résultats obtenus dans les sections précédentes, nous montrerons le dimensionnement et la réalisation de chaque partie du convertisseur BBCU 100kHz / 10kW. Une perspective d’un design idéal est également présentée. / The electricity is taking a more important place in the embedded systems. The electricity is a very moldable form of energy, easy to transport and adjustable or transformed with a very low losses. The electrical energy, associated with power converters, is easier to control than hydraulic and/or pneumatic energies for example, allowing a finer regulation and a cost cutting of maintenance. The installed power in the avionic models is growing fast. With the increasing number of electronic loads, a more electrical aircraft with an AC network would include a large number of rectifiers AC/DC which will have to respect the quality standards. A solution for the reduction of the mass would be to prefer a HVDC network (High Voltage DC BUS). On the future more electrical aircrafts, the designers will be facing a HVDC/DC power conversion. This is the role of the unit called BBCU (Buck Boost Converter Unit). In our case of study, a distribution network in DC voltage (± 270Vdc) is connected to a security low-voltage network (28Vdc) which includes a bidirectional power exchanges achieving 10kW. The power converter for this connection gives new challenges for the power electronics in terms of reliability, safety, failure detection, efficiency and reduction of mass and cost. The design of the power converter needs to take into account for an optimal design. It is thus imperative to take into account three main factors: 1) the evolution of the power topologies 2) the evolution of the active and passive devices and 3) the power integration. The meeting of these three factors will allow the miniaturization of the power converters. At first, the adopted approach for designing power converters, taking into account the power topology, the differential filters and the cooling system are presented. The various elements which compose the power converter are described in an Object-Oriented Programming. The performance factors will be introduced to facilitate the choice of semiconductors, capacitors and heat-sinks. Secondly, the operation phases of a multicellular isolated DC/DC topology for the proposed application are presented. A discussion of the advantages of the magnetic coupling is also introduced. Thanks to the isolation, different associations of switching cells, series or/and parallel connection, are possible. Knowing the losses of power semiconductors is an essential step to design a power converter, thus two approaches are proposed: 1) a simulation model using a relatively simple model with the datasheets information; and 2) a losses measurement method which is precise and compatible with the fastest devices. As regards the magnetic components, a response surface of ferrite materials will be presented. Some models for the determination of the magnetic field inside the core and the current ripple are also described. Finally, by taking advantage of models and results obtained in the previous sections, the design and the realization of each party of the BBCU power converter 100kHz / 10kW is showed. A perspective of an ideal design is also presented.
|
Page generated in 0.0755 seconds