31 |
Steady-State and Small-Signal Modeling of a PWM DC-DC Switched-Inductor Buck-Boost Converter in CCMLee, Julie JoAnn 16 July 2012 (has links)
No description available.
|
32 |
Modeling and Control of a Single-Phase, 10 kW Fuel Cell InverterNergaard, Troy 09 September 2002 (has links)
As the world's energy use continues to grow, the development of clean distributed generation becomes increasingly important. Fuel cells are an environmentally friendly renewable energy source that can be used in a wide range of applications and are ideal for distributed power applications. In this study, the power conversion element of a dual single-phase, 10 kW stand-alone fuel cell system is analyzed. The modular converter consists of a DC-DC front-end cascaded with a half-bridge inverter. The entire system is accurately modeled, to help determine any interactions that may arise. Control strategies based on simplicity, performance, and cost are evaluated. A simple voltage loop, with careful consideration to avoid transformer saturation, is employed for the phase-shifted DC-DC converter. Several experimental transfer functions were measured to confirm the modeling assumptions and verify the control design of the DC-DC converter. Two control options for the inverter are explored in detail, and experimental results confirm that the modulation index must be controlled to regulate the output voltage during various load conditions. The final system is implemented without the use of current sensors, thus keeping the inverter cost down. Experimental results using a power supply are given for resistive, inductive, and nonlinear loads and the performance is acceptable. Fuel cell test results, including transient response, are also displayed and analyzed. / Master of Science
|
33 |
High-Efficiency Low-Voltage High-Current Power Stage Design Considerations for Fuel Cell Power Conditioning SystemsMiwa, Hidekazu 04 June 2009 (has links)
Fuel cells typically produce low-voltage high-current output because their individual cell voltage is low, and it is nontrivial to balance for a high-voltage stack. In addition, the output voltage of fuel cells varies depending on load conditions. Due to the variable low voltage output, the energy produced by fuel cells typically requires power conditioning systems to transform the unregulated source energy into more useful energy format. When evaluating power conditioning systems, efficiency and reliability are critical. The power conditioning systems should be efficient in order to prevent excess waste of energy. Since loss is dissipated as heat, efficiency directly affects system reliability as well. High temperatures negatively affect system reliability. Components are much more likely to fail at high temperatures. In order to obtain excellent efficiency and system reliability, low-voltage high-current power conditioning systems should be carefully designed.
Low-voltage high-current systems require carefully designed PCB layouts and bus bars. The bus bar and PCB trace lengths should be minimized. Therefore, each needs to be designed with the other in mind. Excessive PCB and bus bar lengths can introduce parasitic inductances and resistances which are detrimental to system performance. In addition, thermal management is critical. High power systems must have sufficient cooling in order to maintain reliable operation.
Many sources of loss exist for converters. For low-voltage high-current systems, conduction loss and switching loss may be significant. Other potential non-trivial sources of loss include magnetic losses, copper losses, contact and termination losses, skin effect losses, snubber losses, capacitor equivalent series resistance (ESR) losses, and body diode related losses. Many of the losses can be avoided by carefully designing the system. Therefore, in order to optimize efficiency, the designer should be aware of which components contribute significant amounts of loss. Loss analysis may be performed in order to determine the various sources of loss. The system efficiency can be improved by optimizing components that contribute the most loss.
This thesis surveys some potential topologies suitable for low-voltage high-current systems. One low-voltage high-current system in particular is analyzed in detail. The system is called the V6, which consists of six phase legs, and is arranged as a three full-bridge phase-shift modulated converter to step-up voltage for distributed generation applications. The V6 converter has current handling requirements of up to 120A. Basic operation and performance is analyzed for the V6 converter. The loss within the V6 converter is modeled and efficiency is estimated. Calculations are compared with experimental results. Efficiency improvement through parasitic loss reduction is proposed by analyzing the losses of the V6 converter. Substantial power savings are confirmed with prototypes and experimental results. Loss analysis is utilized in order to obtain high efficiency with the V6 converter. Considerations for greater current levels of up to 400A are also discussed. The greater current handling requirements create additional system issues. When considering such high current levels, parallel devices or modules are required. Power stage design, layout, and bus bar issues due to the high current nature of the system are discussed. / Master of Science
|
34 |
Evaluation and Design of a SiC-Based Bidirectional Isolated DC/DC ConverterChu, Alex 01 February 2018 (has links)
Galvanic isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Due to the recent advancement in wide-bandgap semiconductor devices, it has become feasible to achieve the galvanic isolation using bidirectional isolated DC/DC converters instead of line-frequency transformers.
A survey of the latest generation SiC MOSFET is performed. The devices were compared against each other based on their key parameters. It was determined that under the given specifications, the most suitable devices are X3M0016120K 1.2 kV 16 mohm and C3M0010090K 900 V 10 mohm SiC MOSFETs from Wolfspeed.
Two of the most commonly utilized bidirectional isolated DC/DC converter topologies, dual active bridge and CLLC resonant converter are introduced. The operating principle of these converter topologies are explained. A comparative analysis between the two converter topologies, focusing on total device loss, has been performed. It was found that the CLLC converter has lower total device loss compared to the dual active bridge converter under the given specifications. Loss analysis for the isolation transformer in the CLLC resonant converter was also performed at different switching frequencies. It was determined that the total converter loss was lowest at a switching frequency of 250 kHz
A prototype for the CLLC resonant converter switching at 250 kHz was then designed and built. Bidirectional power delivery for the converter was verified for power levels up to 25 kW. The converter waveforms and efficiency data were captured at different power levels. Under forward mode operation, a peak efficiency of 98.3% at 15 kW was recorded, along with a full load efficiency value of 98.1% at 25 kW. Under reverse mode operation, a peak efficiency of 98.8% was measured at 17.8 kW. The full load efficiency at 25 kW under reverse mode operation is 98.5%. / Master of Science / Electrical isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Traditionally, this isolation is achieved via line-frequency transformers, which tend to be bulky and heavy. This imposes a limit on the overall system power density, which is a crucial performance metric for bidirectional power distribution systems.
Alternatively, the required electrical isolation can be implemented through bidirectional power converters. As a result, the overall system power density can be drastically improved. However, the losses incurred by the semiconductor devices in such converters could significantly reduce the overall system efficiency, which is another important performance metric.
Due to the recent advancement in semiconductor devices, it has become feasible to design the required bidirectional power converters with high efficiency and high power density. A survey of the latest generation semiconductor devices is performed. A 25 kW converter prototype was designed and built using the selected semiconductor devices. Experimental testing was conducted for the converter prototype and efficiency values exceeding 98% were captured across the entire load range. The converter prototype has a power density of 78 W/in³.
|
35 |
Design And Implementation Of An Ultracapacitor Test SystemEroglu, Hasan Huseyin 01 July 2010 (has links) (PDF)
In this thesis, a test system is designed and implemented in order to evaluate the basic electrical performance and determine the parameters of ultracapacitors (UC). The implemented UC test system is based on power electronics converters and it is capable of charging and discharging the UC under test with predetermined current profiles. The charging operation is provided by a configuration involving the AC utility grid, a step-down transformer, a diode bridge, and a DC bus filter capacitor followed by a step-down DC-DC converter. The energy stored in the UC under test, as a result of the charging operation, is discharged to a resistor bank through a step-up DC-DC converter and a DC chopper structure. The charging and discharging current applied to the UC under test is provided by means of current mode control of power electronics converters. The control mechanism of the power electronics converters and the transition operations between the charging and discharging phases of the test system is realized via a microcontroller supported hardware structure. In the scope of the thesis study, a UC module composed of five serially connected UC cells is constructed. Constant current and constant power tests are applied to the constructed UC module. The performance of the implemented UC test system is investigated by means of computer simulations and experimental results. Further, basic electrical behaviour of the constructed UC module is evaluated and the parameters are extracted experimentally.
|
36 |
A Parallel-Series Two Bridge DC/DC Converter for PV Power Conditioning Systems Used in Hybrid Renewable Energy SystemsServansing, Amish Ansuman 19 April 2012 (has links)
This thesis presents a parallel-series two-bridge DC/DC converter topology with the ability to operate with ZVS over a wide input and load range. The intended application is power conditioning systems (PCS) of photovoltaic (PV) arrays used in hybrid renewable energy system architectures. The proposed topology provides two degrees of freedom which allows the PV-PCS to regulate the DC-link voltage, while tracking the maximum power point (MPP) of the PV array. This topology distributes the main power into two bridges and the phase-shift between the two bridges and provides another degree of freedom for the PCS to track the MPP. The proposed topology is also able to achieve soft-switching over a wide range. The power conditioning system shows a modular structure to efficiently transfer the power to the load as the main power is divided between two bridges. In addition, the proposed control scheme provides complete decoupling between the input side controller from the output side controller in order to perform MPPT and regulate the the DC-link voltage simultaneously. A 2kW Experimental prototype has been provided to validate the feasibility and performance of the converter. Experimental results prove that the converter is able to regulate the DC-link voltage and track the maximum power extracted from the PV array simultaneously. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-04-18 19:51:43.405
|
37 |
Analysis and Loss Estimation of Different Multilevel DC-DC Converter Modulesand Different Proposed Multilevel DC-DC Converter SystemsPatil, Sandeep 01 August 2014 (has links)
No description available.
|
38 |
Interfacing of battery with a medium voltage DC-DC converter using MATLAB/SimulinkGebreab, Ermias K. January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Sanjoy Das / Noel Schulz / Electrical power, although convenient form of energy to distribute and use, cannot easily be stored in large quantities economically. Most electrical power generated by utility plants is consumed simultaneously in real time. However, in some cases, energy storage systems become crucial when power generated from sources does not fulfill peak power load demand in a power system or energy storage systems are needed as backup. Due to these reasons, various technologies such as batteries, ultracapacitors (UC), superconducting magnetic energy storage (SEMS) and flywheels are beneficial options for energy storage systems.
Shipboard power systems must use one or more energy storage systems in order to backup the existing power system if locally generated power is unavailable. This will lessen the effect of voltage sags on power quality, and improve system reliability. This report mainly focuses on the design of a Boost DC-DC converter and the integration of that converter with a previously designed battery storage model, as well as the effect of varying loads at the end of the converter.
|
39 |
EFFICIENT VOLTAGE REGULATION USING SWITCHED CAPACITOR DC/DC CONVERTER FROM BATTERY AND ENERGY HARVESTING POWER SOURCESChowdhury, Inshad January 2010 (has links)
Recent portable electronic technologies require the power management circuit be efficient, small and cost effective. The switched-capacitor (SC) converter provides a trade-off between the efficiency, the size and the cost that is desirable in many of these new portable technologies. This dissertation investigates different circuit techniques and SC converter topologies to make the SC converters fully adapt to the portable system requirements. To make the SC converter efficient over a wide range of input and output voltages, a family of SC power stages with multiple gain ratio (GR) is developed. Multiple GR allows the converter to provide step-down or step-up voltage conversion while increasing the average efficiency of the converter. These power stages are also capable of providing interleaving regulation that has been proved to be effective in reducing the input and the output noise of the converter. Unlike conventional interleaving, the technique developed in this research uses fewer switches and capacitors. The research also contributes in developing circuit techniques such as charge recycling in the bottom plate parasitic capacitors, local gate driving and adaptive body biasing to reduce the power loss in monolithic SC converter implementation. To control the SC power stage for accurate regulation and fast transient response, a control scheme named adaptive gain/pulse control is developed. The research also investigates the use of multipath compensation scheme in SC converters for ultra fast and low noise performance. The techniques and the topologies developed for SC converters in this research can be effectively implemented in the portable devices to reduce cost, and improve efficiency which leads to longer battery life and circuit implementation using smaller areas.
|
40 |
Interaction of DC-DC converters and submarine power cables in offshore wind farm DC networksWood, Thomas Benedict January 2014 (has links)
Offshore wind power is attracting increasing levels of research and investment. The use of HVDC transmission and the development of DC grids are topics with similar high levels of interest that go hand in hand with the development of large scale, far from shore wind farms. Despite increased capital cost of some components, DC power transmission can have significant advantages over AC transmission, in particular in the offshore environment. These advantages are well established for large scale, long distance point to point transmission. This thesis assesses the suitability of a multi-terminal DC power collection network, with short cables and relatively small amounts of power, addresses a number of the technical challenges in realising such a network and shows methods for overall system cost reduction. Technical and modelling challenges result from the interaction between power electronic DC-DC converters and the cables in a DC transmission network. In particular, the propagation of the ripple current in bipole DC transmission cables constructed with a metallic sheath and armour is examined in detail. The finite element method is used to predict the response of the cable to the ripple current produced by the converters. These results are used along with wave propagation theory to demonstrate that cable design plays a crucial role in the behaviour of the DC system. The frequency dependent cable models are then integrated with time domain DC-DC converter models. The work in the thesis is, broadly, in two parts. First, it is demonstrated that care and accuracy are required in modelling the cables in the DC transmission system and appropriate models are implemented and validated. Second, these models are combined with DC-DC converter models and used to demonstrate the practicality of the DC grid, make design recommendations and assess its suitability when compared with alternative approaches (e.g. AC collection and/or transmission).
|
Page generated in 0.0737 seconds