• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 300
  • 95
  • 38
  • 27
  • 12
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 625
  • 107
  • 86
  • 80
  • 67
  • 61
  • 53
  • 42
  • 42
  • 40
  • 40
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

To evaluate the current solid waste issues in Hong Kong's housing process

Kong, Yiu-kuen, Wilson. January 2002 (has links)
Thesis (M.Hous.M.)--University of Hong Kong, 2003. / Includes bibliographical references. Also available in print.
102

Automotive Brake Wear Debris Analysis

MacCrimmon, Donald Cody 01 January 2009 (has links)
Passenger vehicle disk brakes produce large amounts of wear debris that needs to be analyzed to verify its environmental and health impact because its effects are amplified by the massive extent of vehicular transportation around the world. An efficient and thorough method for wear debris analysis should be derived from this research to assist brake manufacturers and researchers in understanding the characteristics of wear particulates being released from current brake materials. In addition, a test method allowing inspection of brake formulations in development phase should be provided and several model "environmentally friendly" brake lining materials should be developed. The most hazardous constituents in a known brake lining formula should be replaced with non-hazardous materials that will obtain performance specifications comparable to the original formula. The brake manufacturing industry and general public should be notified of important findings from this research. Model brake linings fabricated on-site with known constituents were run through an AO4D performance dynamometer test to collect airborne and non-airborne wear debris that is comparable to wear debris produced by an average passenger vehicle. Based on previous experience with analysis of brake linings, this wear debris will be analyzed with scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX), transmission electron microscopy with EDX (TEM-EDX), X-ray diffraction (XRD), polarized light microscopy (PLM), X-ray fluorescence (XRF), and laser scattering particle size distribution analyzer (LSPSDA). Research presented in this report indicates clearly that the previous work published by several groups is lacking sufficient information and the findings should be corrected. For instance the particle size distribution detected by particle size analyzers and impactors (recommended by EPA) is not accurate and TEM as well as SEM studies allowing direct observation of wear particles revealed considerable differences between sizes detected by these analyzers and realistic particle size. EDX in combination with XRF and XRD allows for reliable identification of chemical species and crystalline phases present in wear debris. True airborne wear debris should be sampled from brake exhaust from an appropriate distance. Degummed hemp shows promising results as a copper replacement in low-metallic friction material.
103

Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?

McGuire, Luke A., Rengers, Francis K., Kean, Jason W., Staley, Dennis M. 28 July 2017 (has links)
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
104

Experimental Modelling of Debris Dynamics in Tsunami-Like Flow Conditions

Stolle, Jacob January 2016 (has links)
Tsunamis are among the most devastating and complex natural disasters, affecting coastal regions worldwide. Tsunami waves are generated through many natural phenomena, such as earthquakes, landslides, and volcanic eruptions. The waves travel at high speeds away from the source, potentially affecting multiple countries with very little warning. Over the past several decades, tsunamis such as the 2004 Indian Ocean, the 2010 Chilean, and the 2011 Tohoku Tsunami served as reminders of the potential devastation of these natural disasters, resulting in tragic loss of life and billions of dollars in damages. Forensic engineering field investigations and subsequent analysis of these events have demonstrated that infrastructure in these tsunami-prone regions was not adequately prepared for the extreme forces associated with a tsunami. As a result, there has been an increased research emphasis worldwide on the planning and design of infrastructure located in tsunami-prone areas to be better prepared for such future events. The present study aims to experimentally investigate and analyze the motion of debris carried by an inundating tsunami flood. One of the previous challenges involved in the evaluation of debris motion during such events was a lack of experimental methods that could non-invasively, quickly and accurately track the motion of debris at high velocities. This study introduces two innovative methods of tracking the debris. The first one used a novel camera-based tracking algorithm, while the second used Bluetooth and Inertial Measurement Unit sensors to track the debris within the inundating tsunami flood. The study outlines, for the first time, the technology and methods involved in the two tracking methods as it used both dry-test and wet-test experiments to evaluate the applicability of these methods in coastal and hydraulic engineering. This study used these two methods to evaluate the motion of debris from experiments conducted in a new Tsunami Wave Basin commissioned recently at Waseda University (Tokyo, Japan). The study examined the effect of the initial positioning of the debris, particularly focusing on the spreading area of the debris (determining thus their maximum displacement and the spreading angle of the debris). The results showed that an increase in the number of the debris resulted in an increase in the spreading angle of the debris and a decrease in the displacement of the debris. The increased number of debris also added significantly more variation in the final resting position of the debris due to the increased debris-debris collisions. The initial orientation of the debris also affected debris motion, particularly influencing the peak velocity of the debris and the distance from the initial debris resting position to where the peak velocity was observed.
105

Numerical Modeling of Tsunami Bore Attenuation and Extreme Hydrodynamic Impact Forces Using the SPH Method

Pich­é, Steffanie January 2014 (has links)
Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris traveling through a large-scale model of a coastal forest.
106

Debris flows in the southern Coast Mountains, British Columbia : dynamic behaviour and physical properties

Jordan, Robert Peter 05 1900 (has links)
Debris flows in the southern Coast Mountains exhibit different dynamic and sedimentologic characteristics, depending on the lithology of their source areas. Fine-textured debris flows originating in the Quaternary volcanic complexes are much more mobile than those originating in the coarse-textured plutonic rocks which form most of this mountain range. Mobility can be described as the velocity of flow, the distance of travel of debris flows, and the slope required to sustain flow. The objectives of this study are to examine the effect of different sediment composition on the mobility of debris flows, and to determine which rheologic models are most applicable for modeling debris flows in these geologic environments. About 25 debris flow events in or adjacent to the southern Coast Mountains were examined, ranging in volume from 10² m³ to over 10⁷ m³. Field methods included sampling of grain-size distribution, measurement of the deposit and channel dimensions, and observation of the stratigraphy of debris flow fans. Shear strength, permeability, and consolidation tests were performed on samples of reconstituted debris, representative of typical fine-textured and coarsetextured debris flows. These samples were also used to model debris flows in a flume. The coarse-textured, plutonic-source, debris flows typically had a distinct, inverselygraded, clast-supported, surface layer of cobbles and boulders. Their deposits tended to be irregular in thickness, with lobes and levees of coarse material. The fine-textured, volcanicsource, debris flows had no such surface layer, and their deposits were generally uniform in thickness and surface morphology. These observations, and corroborating evidence from the flume results, suggest that fine-textured debris flows behave according to the Bingham flow model, while coarse-textured debris flows can be better described by a granular, or dilatant, flow model. A clay content of about 4% in the matrix (sub-4 mm material) is a useful measure to distinguish the two populations. Several debris flow events of intermediate behaviour and sediment composition were also examined. The permeability of the debris, and hence its rate of consolidation, is an important factor controlling mobility. The volume of debris flow events was found to be the most significant factor controlling runout distance. / Arts, Faculty of / Geography, Department of / Graduate
107

Space debris : legal rules for its mitigation and perspectives on remediation

Mwabi, Christelle Tumba January 2019 (has links)
No abstract / Mini Dissertation (LLM)--University of Pretoria, 2019. / Public Law / LLM / Unrestricted
108

Regulation of tumor growth by CHOP chemotherapy-generated debris

Fernandes, Djanira Patricia 11 July 2017 (has links)
While CHOP chemotherapy (cyclophosphamide, doxorubicin, vincristine, and prednisone), the current standard of care for non-Hodgkin lymphoma (NHL), kills tumor cells, the accumulation of tumor cell “debris” can stimulate inflammation and tumor growth. Thus, cytotoxic cancer therapies are a double-edged sword. Previous studies have shown that apoptotic debris stimulates tumor growth. We hypothesize that (1) CHOP-generated tumor cell debris can promote lymphoma progression via release of pro-inflammatory cytokines; (2) blocking phosphatidylserine (PS), which is presented on the surface of apoptotic cells, may inhibit debris-stimulated cancer progression. METHODS: Lymphoma EL4 debris was generated by treating tumor cells with CHOP chemotherapy. EL4 debris was isolated via Ficoll gradient and co-injected with living EL4 tumor cells into immunocompetent C57BL/6 mice. Macrophage-secreted cytokines were measured via array analysis. RESULTS: Flow cytometry confirmed CHOP chemotherapy generated apoptotic/necrotic debris. Vincristine-, mafosfamide-, and prednisolone-generated lymphoma EL4 debris stimulated tumor growth by over 100-fold in a dose-dependent manner. Debris alone did not induce tumors, even at 250 days post-injection. Doxorubicin-generated EL4 debris stimulated tumor growth at low dose (1x105), but inhibited growth at high dose (9x105). Systemic administration of doxorubicin-generated EL4 debris or blocking PS in the cell debris generated by doxorubicin using annexin V or an anti-PS neutralizing antibody inhibited doxorubicin-generated debris-stimulated tumor growth. Therapy-generated debris stimulated macrophage pro-inflammatory cytokine production. CONCLUSIONS: CHOP chemotherapy-generated debris regulates tumor growth via cytokine production. Thus, harnessing the anti-tumor activity of inhibitory debris or neutralizing PS on stimulatory debris may be a novel anti-cancer approach. / 2018-07-11T00:00:00Z
109

Debris-Flow Activity in Canyon of Lodore, Colorado: Implications for Debris-Fan Formation and Evolution

Martin, Jennifer A. 01 May 2000 (has links)
Large-scale characteristics of Ladore Canyon debris fans are dependent upon the bedrock and lithology of the mainstem and tributary canyons. The largest fans occur in the widest section of the mainstem canyon, which typically correlates with the location of large faults. The steepest fans are found at the mouths of tributaries where cliffs are formed by resistant lithologies. Smaller-scale fan characteristics are dependent upon the magnitude and frequency of events from the respective drainage basin, which is controlled primarily by climate. Three distinct deposit ages ( oldest, intermediate, youngest) were distinguished on individual fans and were tentatively correlated throughout the canyon based on observations of boulder weathering, boulder concentration, soil development, vegetation, and topography. During fall 1997 and late spring 1998, four debris flows aggraded fans in Ladore Canyon. The largest of the four events, Wild Mountain, deposited a 3,800-m2 fan in the mainstem canyon, significantly constricting the Green River. Three of the four debris flows occurred in drainages that had been burned by forest fires during summer 1996. The debris flows were initiated during rainfall events with precipitation totaling more than 3 cm. Events of this magnitude have rarely been recorded in the region during the period of record. Measurements from the Wild Mountain debris fan indicate that under current operating conditions of Flaming Gorge Dam, the Green River has a limited capacity to mobilize newly deposited debris-flow material; therefore, particles eroded from the fan face cannot replenish downstream gravel bars. High release discharges equivalent to the 1997 high releases from Flaming Gorge Dam have a greater potential to rework newly deposited debris fans. (155 pages)
110

Evaluation of the Effectiveness of Flexible Debris Flow Barriers for Control of Huaycos Using Satellite Images and GIS, in the Basin of Rímac River, Perú

Pareja Dominguez, Marco Antonio, Pascual Figueroa, Henry Douglas, Silva Dávila, Marisa Rosana 01 January 2022 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Recurrent economic and human losses occur in populated areas caused by the debris flow, known in Peru as “huayco” and for which there is little information. To determine the effectiveness of debris flow barriers installed in 2016 in three high-risk creeks with slopes ranging from 29 to 35%, it was analyzed satellite images with the Geographical Information System (GIS). For that, it is necessary to obtain the volumes of both soil erosion in the upper basin transported by the debris flow and the retained solids by the barriers. Topographic, geological, geomorphological, and hydrological characteristics were evaluated, as well as the evolution of the population in the dejection cone. It was no possible to obtain results for all the destructive events because there are no cartographies, and the available satellite images do not have enough temporal or spatial resolution or present cloudiness greater than 20%. The field investigations after the ENSO 2017 occurrence made it possible to verify that the debris flow barriers allowed to avoid the loss of human life and material damage. The field measured volumes of the solids retained by the barriers and the previously estimated volumes of erosion were compared, and retention efficiency of 80–90% was obtained. It recommends continuing with this research because it is necessary to know debris flow characteristics for analyzing the convenience and technical requirements for the implementation of retention barriers in other dangerous streams that are difficult to access.

Page generated in 0.0159 seconds