• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 300
  • 95
  • 38
  • 27
  • 12
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 624
  • 107
  • 85
  • 80
  • 67
  • 61
  • 53
  • 42
  • 42
  • 40
  • 40
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Anti-satellite weapons : threats, laws and the uncertain future of space

Hart, Brandon L. January 2007 (has links)
No description available.
72

Depositional record of historic lahars in the Whangaehu Gorge, Mt. Ruapehu

Graettinger, Alison Hollomon January 2008 (has links)
Mt. Ruapehu is one of the most lahar prone volcanoes in the world, having both a crater lake and six small glaciers upon its 2797 m summit. The major outlet for the crater lake, the Whangaehu Gorge, has hosted over 46 historic lahars. However, the low preservation of debris flow deposits, as a result of frequent remobilisation on steep slopes, allows for the detailed description of only 9 lahar events over the last 150 years. Field investigation, historic aerial photos, two airborne LiDAR surveys and direct measurements have been utilised to describe the sedimentology, geomorphology and distribution of historic lahar deposits in the first 11 km of the Whangaehu Gorge. Inundation maps have been created for 1945, 1953, 1975, September 1995, October 1995, March 2007 and September 2007. Grain size distribution, componentry and geomorphology of the 1861, 1975, September 1995, October 1995, 1999 and 2007 lahar deposits have been compared. The lahar deposits are massive, very poorly sorted, silty gravels that form a series of unconsolidated terraces. The limited sediment sources in the steep sided Whangaehu Gorge, including minor historic eruption products, results in significant recycling of lahar deposits. However, the deposits can be differentiated by proportions of lithological components and in some cases anthropogenic debris. The abundance of hydrothermally altered material reflects the role of Crater Lake in lahar formation, although, some of these materials (gypsum, sulphur and snow) are only temporary. Non-cohesive debris flows and occasional snow slurry lahars have been formed by a range of triggering mechanisms associated with and independent of eruptions. Lahars have been formed in the Whangaehu Valley as the result of ejected crater lake water and associated snow melt (1975, September 1995 and September 2007), as well as the progressive displacement of lake water as a result of lava dome growth (1945) and uplift of the lake floor (1968). Inter-eruption lahars occur as a result of Crater Lake outburst floods (1861, 1953 and March 2007) and remobilisation by precipitation and the collapse of tephra laden snow (October 1995 and 1999). The comparison of historic lahars also reflects the range of lahar magnitudes experienced historically on Ruapehu. The most recent Crater Lake outburst of March 2007, with a peak discharge of 1700-2500 m3/s is the second largest recorded lahar, behind only the eruption-generated lahar of April 1975 with a peak discharge of 5000-7500 m3/s. Lahar mitigation can subsequently be based on lahar generation and incorporation of the vast amounts of data collected before and after the 2007 outburst flood. Recent remobilisation and phreatic activity suggest the significant under-representation of small volume events like rain-generated and snow slurry lahars in the geologic record.
73

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
74

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
75

Studies on the performance improvement of an integrated apparatus for concentration of ferrous debris and viscosity of lubricant

Lin, Ji-Ying 10 September 2012 (has links)
Lubrication is the lifeblood of mechanical device during the operating conditions, so that the lubricating oil detection becomes one of an important modern technology. The operator can be as early as possible to know whether the abnormal wear occurs by detecting concentration of ferrous debris in the lubricating oil. Detecting the viscosity of lubricating oil can also allow the operator to monitor the deterioration degree of lubricating oil due to environmental factors, in order to ensure whether the lubricating oil losing its effectiveness. Our laboratory previously developed a prototype of integrated apparatus for detecting the concentration of ferrous debris and the viscosity of lubricant in a single process. This study focuses on improving this prototype, so that the apparatus possesses a LCD displayer and commercialization. The design of the integrated apparatus contains a sampling unit, a measurement unit of the ferrous debris concentration, a measurement unit of the viscosity, a data acquisition system, and LCD displayer panel. In measurement unit of the ferrous debris concentration, Hall IC is used as a sensor to measure the concentration of ferrous debris by detecting the change of magnetic flux density between the magnetic poles due to the stacking of ferrous debris. In the measurement unit of the viscosity of the lubricating oils, the piston is used to squeeze the oil into the tank to measure the viscosity by detecting the load. These two units are integrated into a measuring device, and there is no interference between the values measured by the Hall IC and the load cell. Finally, these two signals are fed to a personal computer for data analysis to obtain the concentration of ferrous debris and the viscosity of lubricant. Consequently, the operator can directly observe the measured results.
76

Late Cretaceous through Paleogene Reconstruction of Pacific Deep-Water Circulation

Schubert, Jessica 2012 May 1900 (has links)
A growing body of Nd isotope data derived from fish debris and Fe-Mn crusts suggests that the Pacific was characterized by deep-water mass formation in both the North and South Pacific during the Early Paleogene. However, the South Pacific source has not been identified to date. Here we present new fossil fish debris neodymium isotope data from the South Pacific and southern tropical Pacific Ocean Drilling Program and Deep Sea Drilling Project Sites 323, 463, 596, 865 and 869 (paleowater depths spanning 1500 to 5000m) to reconstruct the water mass composition over the time interval ~80 to ~24 Ma. The data indicate a relatively unradiogenic South Pacific water mass composition, and the composition of Nd increases with distance northward. The new tropical Pacific data are consistent with existing records from that region. Analyses of detrital sediment Nd isotopic composition, combined with the dissolved Nd composition recorded by fish debris, suggests that the South Pacific water mass convected in the Pacific sector of the Southern Ocean. We designate this water mass South Pacific Deep Water (SPDW). The Nd isotopic composition of SPDW is more radiogenic than initially hypothesized and the relatively small increase in isotopic composition (from ~-6 to ~-4) during the transit from the Southern Ocean to the tropical Pacific suggests a faster rate of overturning circulation during the greenhouse climate interval than previously thought.
77

Structure of downed woody and vegetative debris in old-growth Sequoia sempervirens forests /

Graham, Bradley D. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2009. / Includes bibliographical references (leaves 71-82). Also available via Humboldt Digital Scholar.
78

Analysis of the NASA shuttle hypervelocity impact database /

Stucky, Michael S. January 2003 (has links) (PDF)
Thesis (M.S. in Space Systems Operations)--Naval Postgraduate School, September 2003. / Thesis advisor(s): Eric Christiansen, Rudy Panholzer, Dan Bursch. Includes bibliographical references (p. 75-76). Also available online.
79

Aquatic-terrestrial linkages in Appalachian streams influence of riparian inputs on stream habitat, brook trout populations, and trophic dynamics /

Sweka, John A. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 198 p. : ill., maps. Vita. Includes abstract. Includes bibliographical references.
80

Delineation of mass movement-prone areas by Landsat 7 and digital image processing /

Howland, Shiloh Marie, January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2003. / Includes bibliographical references (p. 38-40).

Page generated in 0.0391 seconds