• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 34
  • 25
  • 13
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 35
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Light Harvesting And Efficient Energy Transfer In Boron Dipyrrin (bodipy) Functionalized Perylene Diimide Dyads

Yilmaz, Mahmut Deniz 01 July 2006 (has links) (PDF)
An antenna for light harvesting is an organized multicomponent system in which several chromophoric molecular species absorb the incident light and channel the excitation energy to a common acceptor component. In this study, Click chemistry has been successfully applied in the synthesis of a bay region tetraboron dipyrrin (BODIPY) appended perylenediimide (PDI). This light-harvesting molecule presents a large cross section for the absorption of light in the visible region. Excitation energy is efficiently channeled to the perylenediimide core. This novel antenna system is the first demonstration of the efficiency of energy transfer in a BODIPY- PDI bichromophoric system and appears to be highly promising for the design and synthesis of similar dendritic structures.
82

N-isopropyl-acrylamide conjugated polyglycerol as a delivery vehicle for in vitro sirna transfection

Nicolini, Anthony Michael 23 May 2011 (has links)
Gene expression knockdown using RNA interference has dramatically altered the ability to silence target genes without the need for a creation of a genetic knockout. The pitfalls surrounding successful siRNA gene expression knockdown fall in the broad category of delivery. This work focuses on the use of N-isopropyl-acrylamide conjugated polyglycerol (PGNIPAM) as a novel cationic vector of in vitro and possible in vivo delivery of siRNA. The hyper-branched structure of the PGNIPAM molecule bears a biocompatible core with cationic subunits on the surface, providing a less toxic alternative to other cationic polymers used in the past. Further PGNIPAM shows excellent binding and release characteristics over other comparable molecules and systems. Activity of the siRNA requires access to the cell cytoplasm, which in turn requires passage of the siRNA through the cell membrane and release into the internal environment with no degradation. PGNIPAM has shown the ability to traverse the endocytic pathway and release the siRNA directly into the cytoplasm where it can interact with cellular machinery. Knockdown of known oncogene survivin was observed in vitro both through mRNA expression reduction as well as through protein reduction in MDA-MB-231 human breast cancer cells. Additionally, early stage animal work with a human breast cancer model shows positive results for coupled treatment of tumors using siRNA against survivin and doxorubicin, an anticancer drug. PGNIPAM offers a safer alternative to other cationic delivery systems and has shown improvement over standard modes of knockdown from commercial products.
83

Aufbau und Funktionalisierung von Carbosiloxandendrimeren / Synthesis and Functionalisation of Carbosiloxane Dendrimers

Lühmann, Bettina 18 March 2003 (has links) (PDF)
In der vorliegenden Arbeit wird die Synthese von Carbosiloxandendrimeren der dritten Generation durch repetitive Alkoholyse-Hydrosilylierungs-cyclen auf dem divergenten Syntheseweg beschrieben. Im Mittelpunkt der Arbeit stand jedoch die Funktionalisierung dieser Dendrimere mit einer Vielzahl metallorganischer (Ferrocenyl-, Übergangsmetallcarbonyl-verbindungen) bzw. organischer (stickstoffhaltige Ligandsysteme) Einheiten. Zudem wird die Darstellung amphiphiler und bifunktionaler Carbosiloxandendrimere vorgestellt. Die neu synthetisierten Verbindungen wurden analytisch umfassend charakterisiert, wobei die 29Si-{1H}-NMR-Spektroskopie sowie die Massenspektrometrie einen besonderen Stellenwert einnehmen.
84

Development of therapeutic systems to treat the infarcted heart

Gray, Warren Dale 08 June 2015 (has links)
Cardiovascular disease is the leading cause of morbidity and mortality in developed nations, and heart disease is predicted to remain the leading killer for the foreseeable future. Acute myocardial infarctions—nearly 1.1 million annually occurring in the U.S. alone—are the major cardiovascular disease subgroup. Current treatments for myocardial infarction are limited to interventions that serve to mitigate the initial insult, but clinical applications to protect or regenerate damaged myocardium are lacking. This dissertation examines three therapeutic systems to treat the infarcted heart. First, the decoration of a polymeric nanoparticle with N-acetylglucosamine for the uptake of anti-­apoptotic therapeutics to ameliorate cardiomyocyte cell death. Second, novel dendrimeric structure architecture to allow for regio­selected decoration of ligands to induce angiogenesis. Third, exosomes secreted from hypoxic cardiac progenitor cells as a naturally derived therapeuticfor angiogenesis and anti-fibrosis, and to provide bio-inspired clues for future therapies.
85

Dendrimers as drug and gene delivery vectors : a self consistent field theory study

Lewis, Thomas Wade Stakesby 17 October 2013 (has links)
This research focuses on the modeling of dendrimer molecules for their application as delivery vectors within drug and gene therapy systems. We examine how the architecture and composition of dendrimers affect their drug and gene binding efficacies along with their interactions with anionic bilayers. We specifically focus on how the weakly basic nature of dendrimer monomers and the addition of neutral grafts to dendrimer surface groups affect their interactions with drugs, linear polyelectrolytes, and bilayers. By using polymer self-consistent field theory (SCFT) to model such systems, we develop a computationally efficient means to provide physical insights into these systems, which are intended to guide dendrimer design for delivery applications.We study the conformational properties of weakly basic (annealed) polyelectrolyte dendrimers by developing a SCFT model that explicitly accounts for the acid-base equilibrium reaction of the weakly basic monomers. We specifically focus on the role of local counterion concentration upon the charge and conformations of the annealed polyelectrolyte dendrimers. We compare our results to existing polymer scaling theories and develop a strong stretching theory for the dendrimer molecules.We extend the previous study to model the interactions between weakly basic dendrimers and weakly acidic, hydrophobic drug molecules. We specifically examine the effects of excluded volume, electrostatic, and enthalpic interactions on the binding efficacies between dendrimers and drugs under a variety of dendrimer generations, solution pOH conditions, drug sizes, and Bjerrum length values.We study the role of neutral dendrimer grafts on the conformations and drug binding efficacies of dendrimers. We then elucidate how the observed conformational changes affect the charge of the dendrimers. Furthermore, we examine how the presence of grafts affects the steric, electrostatic, and hydrophobic interactions between the drugs and dendrimers under a variety of solution conditions. We compare our results with the binding efficacies observed for non-grafted dendrimers to delineate the conditions under which the grafted dendrimers are better suited as drug hosts.We include semi-flexible, anionic linear polyelectrolyte (LPE) molecules in our grafted dendrimer SCFT framework to model the interactions between dendrimers and negatively charged genetic materials. Specifically, we examine how neutral dendrimer grafts, LPE stiffness, and solution pOH affect the interactions between dendrimers and LPEs. We then use our SCFT potential fields as input into Monte Carlo simulations in order to determine the dendrimer-LPE potentials of mean force and the resulting loop and tail statistics of the dendrimer-adsorbed LPE chains.We incorporate a negatively charged bilayer into our grafted dendrimer SCFT framework to model dendrimer interactions with a cellular membrane. We specifically examine the role of dendrimer grafting length, solution pH, and membrane tension on such interactions. By comparing our results with SCFT calculations of fixed dendrimer conformations and hard sphere nanoparticles in the presence of membranes, we delineate the role of dendrimer flexibility and porosity on the interactions between dendrimers and anionic bilayers. / text
86

Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structure

Weir, Michael Glen 07 February 2011 (has links)
This work describes the synthesis of dendrimer-encapsulated nanoparticles (DENs) and the expansion of the characterization ability for these materials. The dendrimer-template method for the synthesis of nanoparticles allows precise control over the size, composition and structure of nanoparticles in the 40-250 atom range. In this size regime, the surface structure of the nanoparticles dominates their catalytic properties. The long term goal of this research is to correlate the structure of these nanoparticles to their catalytic activity, improving the ability to predict superior catalysts a priori. As a prerequisite for this analysis, the precise structure of the catalytically active nanoparticle must be determined. Characterization of nanoparticles in the 1-2 nm region is significantly more difficult than more commonly used nanoparticles of 3-5 nm diameter or larger. Typical characterization of these nanoparticles involves UV-vis spectroscopy for Mie absorbance and transmission electron microscopy for size analysis. This work involves the use of extended X-ray absorption-fine structure (EXAFS) to determine the local structure of the nanoparticles. For monometallic Pt DENs, EXAFS was combined with UV-vis, TEM, X-ray photoelectron spectroscopy (XPS) and electrochemistry to determine that the Pt system is not simply nanoparticles but a more complex, bimodal state. EXAFS has also been used to differentiate between different bimetallic structures. For PdAu DENs, there are two synthetic methods used. When both metals are reduced simultaneously, the resulting nanoparticles have a quasi-random alloy structure. These nanoparticles were then extracted from the dendrimer into an organic solvent by use of alkanethiols. The extraction process changed the alloy structure into Au-core/Pd-shell. When Pd and Au were reduced in sequence, the DENs were formed as a Au-core/Pd-shell material, regardless of the order of the reduction of the metals. The Au-core/Pd-shell structure was also present after extraction. In addition to structural analysis to determine the result of different synthetic methods, EXAFS was also used in situ to measure the structure of Pt DENs during the oxidation of absorbed CO. These in situ measurements are important for determining the structure of the actual catalyst rather than the precursor nanoparticle. In this case, the Pt DENs changed from a bimodal distribution into fully reduced nanoparticles by the application of a reducing potential. The binding of CO to the Pt DENs and subsequent oxidation did not cause measurable agglomeration of the nanoparticles. This reduction of the Pt system by electrochemical means was also explored as a synthetic method. The Pt-dendrimer complex was placed on a TEM grid for electrochemical treatment. A potential step was shown to reduce some of the Pt-dendrimer complexes into Pt nanoparticles of the expected size. However, most of the complexes were not reduced. Therefore, only the standard chemical reduction followed by electrochemical treatment is sufficient to fully reduce the nanoparticle samples. This work has explored additional synthetic methods for the synthesis of monometallic and bimetallic DENs. The use of EXAFS, as well as other advanced characterization techniques, has advanced knowledge of the structure of various DENs. Both the characterization toolset and the synthetic methods will provide a basis for investigations of catalytically active materials. / text
87

Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis

Niu, Yanhui 30 September 2004 (has links)
The research in this dissertation examines the chemistry and applications of dendrimers in homogeneous catalysis. We examined interactions between dendrimers and charged probe molecules, prepared dendrimer-encapsulated metal nanoparticles in organic solvents, studied size-selectivity of dendrimer-encapsulted catalysts, and designed molecular rulers as in-situ probes to measure the location of dendrimer-encapsulted metal nanoparticles. The intrinsic proton binding constant and a constant that characterizes the strength of electrostatic interactions among occupied binding sites in poly(amidoamine) (PAMAM) dendrimers have been obtained by studying the effect of solution pH on the protonation of the dendrimers. The significant finding is that these two factors are greatly modulated by the unique and hydrophobic microenvironment in the dendrimer interior. Hydrophilic poly(propylene imine) (PPI) dendrimers were modified with various hydrophobic alkyl chains through an amide linkage and were then used as templates for preparing intradendrimer copper nanoclusters. The main driving force for encapsulating metal-ions was found to be the differences in metal-ion solubility between the solvent and the interior of the dendrimer. Nanometer-sized metal particles are synthesized and encapsulated into the interior of dendrimers by first mixing together the dendrimer and metal ion solution and then reducing the composite chemically, and the resulting dendrimer-encapsulated metal nanoparticles can then be used as catalysts. By controlling the packing density on the dendrimer periphery using either different dendrimer generations or dendrimer surface functionalities, it is possible to control access of substrates to the encapsulated catalytic nanoparticle. Molecular rulers consisting of a large molecular "stopper", a reactive probe and a linker were designed as in-situ probes for determining the average distance between the surface of dendrimer-encapsulated palladium nanoparticles and the periphery of their fourth-generation, hydroxyl-terminated PAMAM dendrimer hosts. By doing so, we avoid having to make assumptions about the nanoparticle size and shape. The results suggest that the surface of the encapsulated nanoparticle is situated 0.7 ± 0.2 nm from the surface of the dendrimer.
88

Electrochemical impedance modelling of the reactivities of dendrimeric poly(propylene imine) DNA nanobiosensors.

Arotiba, Omotayo Ademola. January 2008 (has links)
<p>In this thesis, I present the electrochemical studies of three dendrimeric polypropylene imine (PPI) nanomaterials and their applications as a platform in the development of a novel label free DNA nanobiosensor based on electrochemical impedance spectroscopy. Cyclic voltammetry (CV), differentia pulse voltammetry (DPV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivities of the nanomaterials on glassy carbon electrode (GCE) as the working electrode.</p>
89

Conception, synthèse et étude de dérivés de C60 fonctionnalisés : applications biologiques et développement méthodologique

Sigwalt, David 26 March 2013 (has links) (PDF)
Notre équipe a récemment développé une méthode polyvalente permettant de préparer des dérivés complexes de C60 hexa-adduits fonctionnalisés. Cette méthodologie permet d'obtenir des produits aux caractéristiques originales. Le C60 central agit comme un support central peu réactif, autour duquel des fonctionnalités sont réparties dans un espace octaédrique parfaitement défini. La première partie de ce travail de thèse a consisté à exploiter cette méthodologie pour créer des C60 hexa-adduits polycationiques aux propriétés de transfection remarquables. Dans un second temps, les dendrons polyamines synthétisés ont été mis à profit pour créer des structures supramoléculaires de C60 hexa-adduits, sous forme micellaire. Par la suite, l'étude de ces assemblages a orienté nos investigations vers l'élaboration de dérivés de C60 hexa-adduits mannosylés multivalents résultant d'un assemblage supramoléculaire, dont leurs possibles applications biologiques sont actuellement à l'étude. En parallèle une synthèse covalente a permis d'obtenir un "équivalent dendritique" de C60 hexa-adduit multimannosylé. Partant du constat que notre méthodologie est efficace principalement pour des dérivés de C60 hexa-adduits qui ont une régio-sélectivité particulière, la dernière partie a été consacrée au développement de nouvelles voies de synthèses qui pourront permettre de créer des dérivés de C60 avec un contrôle régio-sélectif original.
90

Synthesis of Well-Defined Polymer Nanoparticles

Carl Urbani Unknown Date (has links)
The synthesis of well-defined polymer nanoparticles will have immediate applications in the biomedical industry as nanocontainers for the controlled delivery and release of water insoluble drugs. The ability to control molecular weight, particle morphology and chemical functionality and to obtain polymeric nanoparticles with narrow molecular weight and particle size distributions is paramount for their application-specific design. Two synthetic approaches were investigated in the synthesis of well-defined polymer nanoparticles, emulsion polymerization and self assembly. The successful implementation of Reversible Addition-Fragmentation Chain Transfer (RAFT) in emulsion polymerization was the first challenge faced when controlling nanoparticle molecular weight and size. Initially we showed that successful ‘living’ emulsion polymerizations of styrene could be carried out using a non-ionic surfactant. The success was achieved when preparing polymers of low molecular weight (5 and 9 K targeted Mn’s with polydispersities (PDIs) below 1.2). Deviation from ideal ‘living’ behavior occurred when targeting Mn’s greater than 20 K (at 100 % conversion). The ‘degassing technique’ was then investigated as an avenue to generate stable polystyrene nanoparticles by emulsion polymerization without the addition of surfactant (residual surfactant can result in detrimental effects on product quality). The polymerization of this emulsion system in the presence of a low reactive RAFT agent was ‘living’ in nature. In the presence of a high reactive RAFT agent the emulsion system showed ‘living’ nature, however, secondary nucleation occurred, which resulted in broad molecular weight distribution (MWD). Thus, the emulsion polymerization approach to preparing well-defined polymer nanoparticles was giving less than desirable results. An alternative method to prepare polymer nanoparticles with controlled chemical composition and morphology is to self assemble pre-synthesized block copolymers in water. This approach has several significant advantages over the emulsion systems: (i) all polymer chains are of near uniform chain length and chemical composition, (ii) the ratio between the hydrophobic and hydrophilic polymers can easily be controlled, (iii) chemical functionality can be located in different morphological regions, (iv) a wide range of 3-dimensional structures apart from spheres can be prepared (i.e. rods and vesicles), and (v) additives such as surfactant, stabilizers and residual monomer usually found after an emulsion polymerization are not required in the self assembly methodology. These advantages justify our shift in strategy. The only disadvantage of the self assembly process is that one cannot reach high weight fractions of polymer in water and is usually limited to below 2 wt-%, where as emulsion polymerizations can allow weight fractions of polymer close to 50 wt-%. Well-defined amphiphilic 4-arm star polyacrylic acid-block-polystyrene (PAA-b-PSTY) copolymers, prepared by RAFT solution polymerization, were dispersed in water to form core-shell micelles, in which the shell consisted of tethered PAA loops. The entropic penalty for having such loops resulted in a less densely packed PSTY core when compared to linear diblock copolymers of the same arm length. The surface of the shell was irregular due to the tethering points, but when cleaved the PAA chains extended to form a regular and relatively uniform corona. Controlling the polymer architecture enabled the synthesis of polymer micelles with tethered PAA loops, which could be opened to form uniform corona when desired. Three-miktoarm star and dendrimers with miktoarms consisting of PSTY, polytert-butyl acrylate (PtBA), polymethyl acrylate (PMA) and PAA were then synthesized using a combination of Atom Transfer Radical Polymerization (ATRP) and Huisgen 1,3-dipolar cycloaddition ‘click’ reactions. In all reactions, the stars and dendrimers were well-defined with PDIs lower than 1.09. This was the first step in the synthesis of well-defined highly ordered polymer structures. The synthesis of such structures demands high level of purity at each synthetic step eliminating the possibility of side reactions, which as of consequence lowers product yields. The synthesis and use of reactive solid supports to remove excess linear polymer to increase the yields of polymeric 3-arm stars and dendrimers was employed. These supports are a cheap approach to scavenge polymeric species with either azido or alkynyl functionality, after which the solid support can be filtered away from the product. These supports aided the synthesis of 3rd generation polymeric dendrons and dendrimers consisting of homopolymer PSTY with either solketals or alcohols at the periphery, diblock PSTY and PtBA, and amphiphilic diblock. The methodology used to construct these structures was a combination of ATRP to produce linear polymers with telechelic functionality, with the subsequent use of this functionality to join the polymers together via ‘click’ reactions. Micellization of the amphiphilic structures in water produced polymer nanoparticles of uniform size. The dendrimer nanoparticles were 18 nm in diameter, consisting of 19 individual dendrimers. The dendrimers most probably have no mutual interpenetration and thus pack uniformly to form the micelles. The dendron nanoparticles were 21 nm with an aggregation number of 43 dendrons per micelle, which suggests they form cone-like structures and self-assemble to form crew-cut micelles. Using a convergent approach polymer structures with unprecedented chemical diversity (hydrophobic or amphiphilic) and complexity (G2 miktoarm dendrimers with a degradable core) consisting of PSTY, PMA, PtBA and PAA were then synthesized with high purity using copper wire as the ‘click’ catalyst.

Page generated in 0.0255 seconds