91 |
Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flowZhakupov, Mansur 16 August 2006 (has links)
The accurate description of fluid flow through porous media allows an engineer to properly analyze past
behavior and predict future reservoir performance. In particular, appropriate mathematical models which
describe fluid flow through porous media can be applied to well test and production data analysis. Such
applications result in estimating important reservoir properties such as formation permeability, skin-factor,
reservoir size, etc.
"Real gas" flow problems (i.e., problems where the gas properties are specifically taken as implicit
functions of pressure, temperature, and composition) are particularly challenging because the diffusivity
equation for the "real gas" flow case is strongly non-linear. Whereas different methods exist which allow
us to approximate the solution of the real gas diffusivity equation, all of these approximate methods have
limitations. Whether in terms of limited applicability (say a specific pressure range), or due to the relative
complexity (e.g., iterative character of the solution), each of the existing approximate solutions does have
disadvantages. The purpose of this work is to provide a solution mechanism for the case of timedependent
real gas flow which contains as few "limitations" as possible.
In this work, we provide an approach which combines the so-called average pressure approximation, a
convolution for the right-hand-side non-linearity, and the Laplace transformation (original concept was put
forth by Mireles and Blasingame). Mireles and Blasingame used a similar scheme to solve the real gas
flow problem conditioned by the constant rate inner boundary condition. In this work we provide solution
schemes to solve the constant pressure inner boundary condition problem. Our new semi-analytical
solution was developed and implemented in the form of a direct (non-iterative) numerical procedure and
successfully verified against numerical simulation.
Our work shows that while the validity of this approach does have its own assumptions (in particular,
referencing the right-hand-side non-linearity to average reservoir pressure (similar to Mireles and
Blasingame)), these assumptions are proved to be much less restrictive than those required by existing
methods of solution for this problem. We believe that the accuracy of the proposed solution makes ituniversally applicable for gas reservoir engineering. This suggestion is based on the fact that no
pseudotime formulation is used. We note that there are pseudotime implementations for this problem, but
we also note that pseudotime requires a priori knowledge of the pressure distribution in the reservoir or
iteration on gas-in-place. Our new approach has no such restrictions.
In order to determine limits of validity of the proposed approach (i.e., the limitations imposed by the
underlining assumptions), we discuss the nature of the average pressure approximation (which is the basis
for this work). And, in order to prove the universal applicability of this approach, we have also applied
this methodology to resolve the time-dependent inner boundary condition for real gas flow in reservoirs.
|
92 |
Numerical investigation of physical vapor and particulate transport under microgravity conditionsTebbe, Patrick A. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 107-110). Also available on the Internet.
|
93 |
Thermal Conductivity of Soils from the Analysis of Boring LogsPauly, Nicole M. 21 October 2010 (has links)
Recent interest in "greener" geothermal heating and cooling systems as well as developments in the quality assurance of cast-in-place concrete foundations has heightened the need for properly assessing thermal properties of soils. Therein, the ability of a soil to diffuse or absorb heat is dependent on the surrounding conditions (e.g. mineralogy, saturation, density, and insitu temperature). Prior to this work, the primary thermal properties (conductivity and heat capacity) had no correlation to commonly used soil exploration methods and therefore formed the focus of this thesis.
Algorithms were developed in a spreadsheet platform that correlated input boring log information to thermal properties using known relationships between density, saturation, and thermal properties as well as more commonly used strength parameters from boring logs. Limited lab tests were conducted to become better acquainted with ASTM standards with the goal of proposing equipment for future development.
Finally, sample thermal integrity profiles from cast-in-place foundations were used to demonstrate the usefulness of the developed algorithms. These examples highlighted both the strengths and weaknesses of present boring log data quality leaving room for and/or necessitating engineering judgment.
|
94 |
A NOVEL APPROACH TO MEASURING METHANE DIFFUSIVITY THROUGH A HYDRATE FILM USING DIFFERENTIAL SCANNING CALORIMETRYDavies, Simon R., Lachance, Jason W., Sloan, E. Dendy, Koh, Carolyn A. 07 1900 (has links)
The avoidance of hydrate blockages in deepwater subsea tiebacks presents a major technical challenge with severe implications for production, safety and cost. The successful prediction of when and where hydrate plugs form could lead to substantial reductions in the use of chemical inhibitors, and to corresponding savings in operational expenditure. The diffusivity of the gas hydrate former (methane) or the host molecule (water), through a hydrate film is a key property for such predictions of hydrate plug formation. In this paper, a novel application of Differential Scanning Calorimetry is described in which a hydrate film was allowed to grow at a hydrocarbon-water interface for different hold-times. By determining the change in mass of the hydrate film as a function of hold-time, an effective diffusivity could be inferred. The effect of the subcooling, and of the addition of a liquid hydrocarbon layer were also investigated. Finally, the transferability of these results to hydrate growth from water-in-oil emulsions is discussed.
|
95 |
The Development and Processing of Novel Aluminum Powder Metallurgy Alloys for Heat Sink ApplicationsSmith, Logan 06 August 2013 (has links)
The objective of this research was to design aluminum powder metallurgy (PM) alloys and processing strategies that yielded sintered products with thermal properties that rivaled those of the cast and wrought aluminum alloys traditionally employed in heat sink manufacture. Research has emphasized PM alloys within the Al-Mg-Sn system. In one sub-theme of research the general processing response of each PM alloy was investigated through a combination of sintering trials, sintered density measurements, and microstructural assessments. In a second, the thermal properties of sintered products were studied. Thermal conductivity was first determined using a calculated approach through discrete measurements of specific heat capacity, thermal diffusivity and density and subsequently verified using a transient plane source technique on larger specimens. Experimental PM alloys achieved >99% theoretical density and exhibited thermal conductivity that ranged from 179 Wm-1K-1 to 225 Wm-1K-1. Thermal performance was largely dominated by the amount of magnesium present within the aluminum grains and in turn, bulk alloy chemistry. Data confirmed that the novel PM alloys were highly competitive with even the most advanced heat sink materials such as wrought 6063 and 6061.
Two methods of thermal analysis were employed in order to determine the thermal conductivity of each alloy. This first consisted of individual analysis of the specific heat capacity (Cp), thermal diffusivity (?) and density (?) as a function of temperature for each alloy. The thermal conductivity (K) was subsequently determined through the relationship: K=C_p ??. The second means of thermal analysis was a direct thermal conductivity measure using a transient plane source (TPS). The thermal diffusivity and density of samples were both found to decrease with temperature in a linear fashion. Conversely, the specific heat capacity was found to increase with temperature. The only measured thermal property that appeared to be influenced by the alloy chemistry was the thermal diffusivity (and subsequently the calculated thermal conductivity). Both means of thermal analysis showed high thermal conductivity in alloys with low concentrations of magnesium, demonstrating the significance of having alloying elements in solid solution with aluminum. Overall, several alloys were developed using a press and sinter approach that produced higher levels of thermal conductivity than conventional aluminum heat sink materials. The highest thermal conductivity was achieved by alloy Al-0.6Mg-1.5Sn with a calculated value of 225.4 Wm-1K-1. This novel aluminum PM alloy was found to exceed both wrought 6061 and 6063 (195 and 217 Wm-1K-1 respectively). Furthermore, PM alloy Al-0.6Mg-1.5Sn was found to have a significant advantage over die-cast A390 (142 Wm-1K-1).
|
96 |
RADON-222 POTENTIAL IN TILLS OF HALIFAX, NOVA SCOTIAO'Brien, Kelsey, Elizabeth 14 August 2013 (has links)
The relative contributions of bedrock geology, radiometric uranium, till permeability
and surficial geology were assessed as predictors of radon in indoor air in the
Halifax Regional Municipality (HRM), NS, Canada. Bedrock geology and radiometric
uranium were statistically significant predictors (14.4%) of indoor radon, based on
available indoor radon data. Permeability was not among the predictors, which
was surprising given its importance in past studies. In a follow up field analogue
study done in laboratory columns, the permeability and diffusivity, as gas transport
mechanisms, were found, as suspected, to be important drivers on the concentrations
of radon-222 detected. Given the variable thickness of till in the HRM (< 0.5 m to
> 3 m), these experiments highlighted the significance of till thickness, composition,
and permeability in predicting the radioactive radon-222 potential.
|
97 |
A Study of the Mobility of Silver Ions in Chitosan MembranesLin, Elaine Yi-Hua January 2007 (has links)
Chitosan membrane has found applications in biomedical, wastewater treatment, and petrochemical fields that involve the use of silver ions (Ag+). However, mobility of Ag+ in chitosan membranes has seldom been studied. In this study, transport properties of Ag+ in chitosan membranes are studied in-depth, to determine diffusivity coefficient, permeability coefficient, and sorption uptake of Ag+ in chitosan. All parameters are evaluated based on the influence of feed concentration, membrane thickness and operating temperature.
The diffusivity is determined from the time lag obtained from transient diffusion experiments. The permeability is determined from the steady state of permeation experimentally. The diffusivity and corresponding permeability coefficients of Ag+ in chitosan range from to 2.0 10-7 (cm2/s) and from 6.6 10-8 to 2.0 10-7 {mol m/[m2 s (mol/L)]}, respectively, over the conditions tested. Temperature dependencies of these two parameters are found to follow the Arrhenius relationship.
Sorption uptake of the silver salt in chitosan correlates well with the Langmuir isotherm. Also determined from the sorption tests are degree of membrane swelling at different concentrations. This information allows diffusivity coefficients to be determined from the steady state permeation rate. These values of diffusivity are compared with that obtained using the time lag method.
|
98 |
Silicalite-1 Membranes Synthesis, Characterization, CO2/N2 Separation and ModelingTawalbeh, Muhammad 17 December 2013 (has links)
Zeolite membranes are considered to be a promising alternative to polymeric membranes and they have the potential to separate gases under harsh conditions. Silicalite-1 membranes in particular are easy to prepare and suitable for several industrial applications. In this research project, silicalite-1/ceramic composite membranes were prepared using the pore plugging hydrothermal synthesis method and supports with zirconium oxide and/or titanium oxide as active layers. The effect of the support’s pore size on the morphology and permeation performance of the prepared membranes was investigated using five supports with different active layer pore sizes in the range of 0.14 – 1.4 m.
The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electron diffraction spectrometer (EDS), single gas and binary gas mixtures permeation tests. The results confirmed the presence of a typical silicalite-1 zeolite structure with a high internal crystalline order grown inside the pores of the active layer of the supports, with a dense film covering most of the supports active layers. Silicalite-1 crystals in the prepared membranes were preferably oriented with either a- or b-axes perpendicular to the support surface.
Single gas permeation results illustrated that the observed permeances were not directly related to the kinetic diameter of permeants. Instead, the transport of the studied gases through the prepared membranes occurred by adsorption followed by surface diffusion mechanism. Binary gas tests performed with CO2 and N2 mixtures showed that the prepared membranes were selective and very permeable with CO2/N2 permselectivities up to 30 and a CO2 permeances in the order of 10-6 mol m-2 Pa-1 s-1.
A model was developed, based on Maxwell−Stefan equations and Extended Langmuir adsorption isotherm, to describe the transport of binary CO2 and N2 mixtures through the prepared silicalite-1 membranes. The model results showed that the exchange diffusivities (D12 and D21) were less dependent on the feed pressure and feed composition compared to the permeances and the permselectivities. Hence, they are more appropriate to characterize the intrinsic transport properties of the prepared silicalite-1 membranes.
|
99 |
Interaction of oxygen and nitrogen impurities with dislocations in silicon single-crystalsGiannattasio, Armando January 2004 (has links)
An experimental technique based on the immobilisation of dislocations by segregation of impurity atoms to the dislocation core (dislocation locking) has been developed and used to investigate the critical conditions for slip occurrence in Czochralski-grown and nitrogen-doped floating-zone-grown silicon crystals. The accumulation of nitrogen and oxygen impurities along a dislocation and the resulting dislocation locking effect has been investigated in silicon samples subjected to different annealing conditions. In particular, the stress needed to unlock the dislocations after their decoration by impurities has been measured as a function of annealing duration and temperature. The approach used in this study has allowed the determination of new diffusivity data for oxygen and nitrogen in silicon in the technologically important range of temperatures 350-850°C. No other data covering such wide temperature range are available in the literature. In addition to transport properties, the binding energy of an impurity atom to a dislocation in silicon has been deduced from the experimental data in the case of oxygen and nitrogen impurities. A discussion in terms of the impurity species responsible for transport (monomers or dimers) and dislocation locking is also presented. The role of oxide precipitates in the generation of glide dislocation loops and the parameters affecting the occurrence of slip have been investigated in silicon samples containing precipitates of different sizes and different morphologies. The fundamental parameters deduced in this work have been used to develop a numerical model to investigate the effect of different heat treatments on the mechanical properties of silicon wafers containing a controlled distribution of impurities. This model has then been used to simulate real wafer processing conditions during device fabrication to show how they may be modified to increase dislocation locking. It is hoped that these results will have relevance to how wafers are processed in order to minimise or eliminate dislocation multiplication and consequent warpage.
|
100 |
Effect Of Pretreatment And Air Temperature On The Drying Rate, Rehydration Capacity And Color Of ArtichokeParin, Harika 01 October 2004 (has links) (PDF)
In this study, cleaned artichoke hearts belonging to three different ages were
dried under constant external conditions at 50, 60 and 70° / C using an air inlet velocity
of 8.1 m/s. The sample to be dried was pretreated either by keeping it in distilled
water or 1% (w/v) ascorbic acid or sodium bisulfite solutions for 30 minutes at the
corresponding drying temperatures. Further, for comparison, the use of citric acid
solution, increasing the concentrations of the solutions, reducing the pretreatment
time, effect of degree of trimming and halving the samples were investigated.
The experimental drying rate data were treated to estimate the effective
diffusivities and the effect of temperature together with the activation energy
according to an Arrhenius type relation. For the product quality, rehydration capacity
of the dried samples in water at 20° / C as well as their color were determined.
As expected, the rate results indicated an increase in the drying rate hence the
effective diffusivity with temperature for the distilled water and ascorbic acid
pretreated samples. However, a reduction in the rate at the high drying temperature
when sodium bisulfite solution used was attributed to the clogging of the pores by
the precipitated solid due to rapid evaporation at the surface. Similarly, rehydration
capacity and color of the water treated samples were enhanced with temperature
where with the solution treated ones a reverse effect was observed. It is also found
that the rehydration data could be well represented by Peleg equation.
Further, when citric acid solution was used for pretreatment, the results were
quite identical to those of ascorbic acid. Also, increasing the ascorbic acid
concentration to 2% (w/v) improved color whereas decreasing the dipping time
increased discoloration. Finally, as an important parameter, the degree of trimming
of the hearts proved to be highly effective on the rate and the other studied
parameters as well as the post harvest and storage time.
|
Page generated in 0.0257 seconds