1 |
Numerical Simulation of 3.3 kV–10 kV Silicon Carbide Super Junction-MOSFETs for High Power Electronic ApplicationsBalasubramanian Saraswathy, Rishi January 2022 (has links)
The thesis focuses on designing and characterizing SiC 3.3 kV Diffused Metal-Oxide Semiconductor Field-Effect Transistor (DMOSFET)s with a Ron that is significantly lower than that of current commercial devices. The On-state resistance and breakdown voltage are then adjusted by adding a Super-Junction structure. Because of the pillar structure below the p-base area, the depletion will occur both vertically and horizontally and keeps the electric field distribution throughout the drift layer constant. The Super Junction Metal-Oxide Semiconductor Field-Effect Transistor (SJ MOSFET) has a good advantage compared to DMOSFETs. Due to its capacity to tolerate higher breakdown voltages and the fact that it does not require an increase in cell pitch to reach higher voltages, the Super-Junction approach is now the subject of effective research as compared to IGBTs and DMOSFETs. Silicon Carbide , a material with a wide bandgap that facilitates high temperature operation, high blocking voltage, high current flow and high switching frequency, is used to construct the device. In order to maintain a consistent electric field throughout the device, the concentration of the n and p pillars was chosen with a good charge balance between them. The outcomes of designing and simulating a DMOSFET, a Semi-SJ MOSFET, and a Full SJ MOSFET are compared in this research. The semi SJ device resulted in a Ron of 18.4 mΩcm2 and a Vb of 4.1 kV. The full SJ device reached a Ron of 12.4 mΩcm2 and a breakdown voltage of 4.2 kV. One optimized device was chosen from the semi SJ devices and used in several TCAD simulations, and the outcomes were evaluated based on the JFET width, pillar thickness, and charge imbalance between the p and n pillars. In this study, the device was also modelled for 6.5 kV and 10 kV SiC blocking voltage capabilities; the findings are also discussed. / Denna uppsats fokuserar på att utveckla och karakterisera 3.3 kV kiselkarbidbaserade DMOSFET-transistorer med betydligt lägre framspänningsfall jämfört med kommersiella halvledarkomponenter. Framspänningsfallet och spärrspänningen modifieras genom att använda en pelarliknande halvledarstruktur i drift regionen, dvs. en super-junction [SJ] struktur. På grund av pelarstrukturen under p-bas området, uppträder utarmningsområdet av laddningsbärare både vertikalt och horisontellt och ger ett konstant elektriskt fält genom drift-regionen. Super-junction transistorer har flera fördelar jämfört med komponenter i DMOSFET struktur. På grund av sin kapacitet att motstå högre spärrspänningar och genom att strukturen inte behöver en större enhetscellbredd för att nå högre spärrspänning, så är just nu super-junction strukturer i stort forskningsfokus jämfört med IGBT och DMOSFET komponenter. Kiselkarbid, ett material med ett brett bandgap, möjliggör komponenter för höga temperaturer, höga spärrspänningar, höga elektriska strömmar, samt höga växlingsfrekvenser, har använts för att bygga de undersökta komponenterna. För att generera ett konstant elektriskt fält över drift-regionen, så har dopningsnivåerna för n- och p- pelarna valts för att hålla en bra laddningsbalans mellan dem. Simuleringsresultaten av dessa komponentstrukturer, DMOSFET, halv-SJ MOSFET, och hel-SJ MOSFET är jämförda i detta projekt. Halv-SJ MOSFET transistorn resulterade i ett framspänningsfall på 18.4 mΩcm2 och når en spärrspänning av 4.1 kV. Hel-SJ MOSFET strukturen uppnår ett framspänningsfall på 12.4 mΩcm2 och med spärrspänning av 4.2 kV. En optimerad halv-SJ struktur valdes ut för att genomföra ytterligare TCAD simuleringsstudier om effekterna av JFET bredd, pelartjocklek, samt laddningsobalans mellan n- och p- pelarna. I den här studien simulerades även komponentstrukturer för 6.5 kV och 10 kV spärrspänningsklasser; även dessa resultat diskuteras i rapporten.
|
2 |
VERTICAL TRIGATE METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR IN 4H - SILICON CARBIDERahul Padavagodu ramamurthy (9115403) 28 July 2020 (has links)
<p>Advances in modern technology and recent demand for high power applications have motivated great interest in power electronics. Power semiconductor devices are key components that have enabled significant advances in power electronic systems. Historically, silicon has been the material of choice for power semiconductor devices such as diodes, transistors and thyristors. However, silicon devices are now reaching their fundamental limits, and a transition to wide bandgap semiconductors is critical to make further progress in the field. Among them, SiC (silicon carbide) has attracted increasing attention as a power semiconductor to replace silicon due to its superior properties and technological maturity. In fact, SiC power MOSFETs have been commercially available since 2011, and are actively replacing their silicon counterparts at blocking voltages above 1 kV. At these voltages, the specific on-resistance of SiC MOSFETs is 200-300x lower than that of silicon devices. However, conventional vertical SiC MOSFETs are still far from their theoretical performance at blocking voltages below 2 kV. In this regime, the channel resistance is the dominant limitation due to the relatively low channel mobility at the SiO2/4H-SiC MOS interface.<br></p><p> </p><p>In this thesis, the first successful demonstration of a novel power device in 4H-SiC called the trigate power DMOSFET (double diffused metal oxide semiconductor field effect transistor) is presented. This device reduces the channel resistance by a factor of 3-5× compared with the state-of-art commercial power DMOSFETs, without requiring an increase in the channel mobility. The trigate structure is applied to a power MOSFET for the first time along with a self-aligned short channel process. This new structure utilizes both the conventional horizontal surface as well as the sidewalls of a trench to increase the effective width of the channel without increasing the device area. Conceptual design, optimization, process development and electrical results are presented. The trigate power MOSFET with a trench depth of 1 μm designed for a blocking voltage of 650 V has a specific on-resistance of 1.98 mΩcm<sup>2 </sup>and a channel resistance of 0.67 mΩcm<sup>2</sup>.This corresponds to a ∼2× reduction in the total specific on-resistance, and a 3.3× reduction in the specific channel resistance as compared to a conventional DMOSFET with the same blocking voltage rating. This demonstration is a landmark that could help SiC technology compete successfully in the lower blocking voltage regime below 600 V, and access for the first time a completely new segment in the power electronics application space.</p>
|
Page generated in 0.0282 seconds