1 |
Influência do pH na interação do Photofrin®, Photogem® e Photosan® com DMPC e lipoproteína de baixa densidade / Influence of the pH in the interaction of Photofrin®, Photogem® and Photosan® with DMPC and low density lipoproteinNatal, Aline Martins Duboc 21 September 2007 (has links)
O efeito do fotossensibilizador na estrutura biológica não é apenas influenciado por suas propriedades fotofísicas, mas também por sua interação específica com biosistemas.Além disso, a localização do fotossensibilizador no tecido tumoral é um importante fator que resulta em diferentes mecanismos de destruição do tumor. Muitos fotossensibilizadores, após administração sistêmica, se ligam às proteínas plasmáticas e com isso são distribuídos em diferentes sítios no organismo. Os fotossensibilizadores hidrofílicos são largamente transportados por albuminas e globilinas e se acumulam preferencialmente no estroma vascular dos tumores. Entretanto, fotossensibilizadores mais hidrofóbicos se ligam às lipoproteínas, principalmente LDL, que promove a entrada do FS na célula através de endocitose mediado por receptor. Sendo assim, a localização do FS depende de sua ligação com as deferentes proteínas plasmáticas, sua farmacocinética e também é influenciada pela diferença entre o tecido normal e tumoral. O tecido tumoral tem pH mais baixo e maior expressão de receptores de LDL do que os tecidos normais, aumentando a seletividade dos FSs as células tumorais. A incorporação de FS hidrofóbicos em lipossomas para a administração sistêmica pode realçar ao transporte deste pelas lipoproteínas. No presente trabalho estudou-se a influência do pH na interação de fotossensibilizadores com lipossomas de DMPC e LDL. Os fotossensibilizadores utilizados nesse estudo foram Photofrin®, Photogem® e Photosan® que são derivados de hematoporfirinas. A metodologia empregada constitui de variação das concentrações de DMPC e LDL para os seguintes valores de pHs 5,0; 7,4 e 9,0, esse último pH utilizou-se somente para DMPC. O complexo FS - DMPC foi obtido por incubação dos FSs na concentração de 10 micro g.mL-1 com diferentes concentrações de DMPC (0 a 400 micro M) por trinta minutos no escuro. Isolou-se o LDL do plasma humano por ultracentrifugação por gradiente de densidade. Após a separação, o complexo FS - LDL foi obtido por incubação (12 horas no escuro) do FS na concentração 10 micro g.mL-1 com diferentes concentrações de LDL (0 a 0,04 micro M). O comportamento desses complexos foi analisado por espectroscopia de absorção ótica e por espectroscopia de fluorescência. / The effect of a photosensitizing compound on biological structures is governed not only by its photophysical properties but also by the specificity of its interaction with biosystems. Moreover, localization of the photosensitizer in the tumor tissue is an important factor affecting the outcome as well as mechanism leading to tumor destruction. Following administration, most photosensitizers are bound to blood components and delivered to different sites in the organism. It is generally accepted that hydrophilic photosensitizers are largely transported by albumins and globulins and mainly accumulate in the vascular stroma of tumors. More hydrophobic sensitizers are bound to lipoproteins, which promote drug internalization by cells through endocytosis of the lipoprotein carrier. In this way, uptake and localization depend on the initial plasma binding and the plasma pharmacokinetics of the drug. However, the selective localization of some photosensitizers are influence for the difference between malignant and normal tissues. Notably, the lower pH of the microenvironment usually found in the tumor tissue and the expression of greater number of LDL receptors on the surface of the tumor cells might influence cellular uptake. Delivery to lipoproteins or target tissues may be facilitated and enhanced by the incorporation of lipophilic photosensitizers into liposomes for systemic administration. In the present work we have studied the pH-dependence of the interaction of photosensitizers with DMPC liposomes and low density lipoprotein (LDL). The photosensitizers used in this study are Photofrin®, Photogem® and Photosan®, which are hematoporphyrin derivates. The methodology used to this work, constitute of various concentrations of DMPC liposomes and LDL at different pH values. It were used the 5,0; 7,4 and 9,0 pH values. The DMPC-drug complexes were obtained by incubation of the photosensitizers 10 _g.mL-1 with differents DMPC concentrations for 30 min in the dark. The LDL was isolated from human plasma by sequential density gradient ultracentrifugation. The LDL-drug complexes were obtained by incubation of the photosensitizers 10 _g.mL-1 with differents LDL concentrations. The incubation was performed in a water bath at 20_C for 12 hours in the dark. The comportment of the complexes was analyzed by fluorescence spectroscopy and UV-visible spectroscopy.
|
2 |
Influência do pH na interação do Photofrin®, Photogem® e Photosan® com DMPC e lipoproteína de baixa densidade / Influence of the pH in the interaction of Photofrin®, Photogem® and Photosan® with DMPC and low density lipoproteinAline Martins Duboc Natal 21 September 2007 (has links)
O efeito do fotossensibilizador na estrutura biológica não é apenas influenciado por suas propriedades fotofísicas, mas também por sua interação específica com biosistemas.Além disso, a localização do fotossensibilizador no tecido tumoral é um importante fator que resulta em diferentes mecanismos de destruição do tumor. Muitos fotossensibilizadores, após administração sistêmica, se ligam às proteínas plasmáticas e com isso são distribuídos em diferentes sítios no organismo. Os fotossensibilizadores hidrofílicos são largamente transportados por albuminas e globilinas e se acumulam preferencialmente no estroma vascular dos tumores. Entretanto, fotossensibilizadores mais hidrofóbicos se ligam às lipoproteínas, principalmente LDL, que promove a entrada do FS na célula através de endocitose mediado por receptor. Sendo assim, a localização do FS depende de sua ligação com as deferentes proteínas plasmáticas, sua farmacocinética e também é influenciada pela diferença entre o tecido normal e tumoral. O tecido tumoral tem pH mais baixo e maior expressão de receptores de LDL do que os tecidos normais, aumentando a seletividade dos FSs as células tumorais. A incorporação de FS hidrofóbicos em lipossomas para a administração sistêmica pode realçar ao transporte deste pelas lipoproteínas. No presente trabalho estudou-se a influência do pH na interação de fotossensibilizadores com lipossomas de DMPC e LDL. Os fotossensibilizadores utilizados nesse estudo foram Photofrin®, Photogem® e Photosan® que são derivados de hematoporfirinas. A metodologia empregada constitui de variação das concentrações de DMPC e LDL para os seguintes valores de pHs 5,0; 7,4 e 9,0, esse último pH utilizou-se somente para DMPC. O complexo FS - DMPC foi obtido por incubação dos FSs na concentração de 10 micro g.mL-1 com diferentes concentrações de DMPC (0 a 400 micro M) por trinta minutos no escuro. Isolou-se o LDL do plasma humano por ultracentrifugação por gradiente de densidade. Após a separação, o complexo FS - LDL foi obtido por incubação (12 horas no escuro) do FS na concentração 10 micro g.mL-1 com diferentes concentrações de LDL (0 a 0,04 micro M). O comportamento desses complexos foi analisado por espectroscopia de absorção ótica e por espectroscopia de fluorescência. / The effect of a photosensitizing compound on biological structures is governed not only by its photophysical properties but also by the specificity of its interaction with biosystems. Moreover, localization of the photosensitizer in the tumor tissue is an important factor affecting the outcome as well as mechanism leading to tumor destruction. Following administration, most photosensitizers are bound to blood components and delivered to different sites in the organism. It is generally accepted that hydrophilic photosensitizers are largely transported by albumins and globulins and mainly accumulate in the vascular stroma of tumors. More hydrophobic sensitizers are bound to lipoproteins, which promote drug internalization by cells through endocytosis of the lipoprotein carrier. In this way, uptake and localization depend on the initial plasma binding and the plasma pharmacokinetics of the drug. However, the selective localization of some photosensitizers are influence for the difference between malignant and normal tissues. Notably, the lower pH of the microenvironment usually found in the tumor tissue and the expression of greater number of LDL receptors on the surface of the tumor cells might influence cellular uptake. Delivery to lipoproteins or target tissues may be facilitated and enhanced by the incorporation of lipophilic photosensitizers into liposomes for systemic administration. In the present work we have studied the pH-dependence of the interaction of photosensitizers with DMPC liposomes and low density lipoprotein (LDL). The photosensitizers used in this study are Photofrin®, Photogem® and Photosan®, which are hematoporphyrin derivates. The methodology used to this work, constitute of various concentrations of DMPC liposomes and LDL at different pH values. It were used the 5,0; 7,4 and 9,0 pH values. The DMPC-drug complexes were obtained by incubation of the photosensitizers 10 _g.mL-1 with differents DMPC concentrations for 30 min in the dark. The LDL was isolated from human plasma by sequential density gradient ultracentrifugation. The LDL-drug complexes were obtained by incubation of the photosensitizers 10 _g.mL-1 with differents LDL concentrations. The incubation was performed in a water bath at 20_C for 12 hours in the dark. The comportment of the complexes was analyzed by fluorescence spectroscopy and UV-visible spectroscopy.
|
3 |
Synthesis, Purification, and Structural and Dynamic Studies of the Amino-Proximate Transmembrane Domain of CREP-1, a Diverged Microsomal Delta-12-DesaturaseGibbons, William Johnathan, Jr. 26 November 2002 (has links)
No description available.
|
4 |
X-band EPR Spectroscopy of Spin-labeled Membrane Biomolecules Incorporated into Magnetically Aligned Phospholipid BilayersCardon, Thomas B. 14 August 2006 (has links)
No description available.
|
5 |
Solid-state NMR studies of phospholipid model membranes and membrane-associated macromoleculesLu, Junxia 10 July 2007 (has links)
No description available.
|
6 |
HOMOLOGY MODELING OF BOVINE RHODOPSIN: INVESTIGATION OF THE EFFECT OF LIPID COMPOSITION AND EQUILIBRATION ON PREDICTED STRUCTUREBURKHARDT, JONATHAN January 2005 (has links)
No description available.
|
7 |
Modeling and Temperature Control of an Industrial FurnaceCarlborg, Hampus, Iredahl, Henrik January 2016 (has links)
A linear model of an annealing furnace is developed using a black-box system identification approach, and used when testing three different control strategies to improve temperature control. The purpose of the investigation was to see if it was possible to improve the temperature control while at the same time decrease the switching frequency of the burners. This will lead to a more efficient process as well as less maintenance, which has both economic and environmental benefits. The estimated model has been used to simulate the furnace with both the existing controller and possible new controllers such as a split range controller and a model predictive controller (MPC). A split range controller is a control strategy which can be used when more than one control signal affect the output signal, and the control signals have different range. The main advantage with MPC is that it can take limitations and constraints into account for the controlled process, and with the use of integer programming, explicitly account for the discrete switching behavior of the burners. In simulation both new controllers succeed in decreasing the switching and the MPC also improved the temperature control. This suggest that the control of the furnace can be improved by implementing one of the evaluated controllers.
|
8 |
The Extent of Perturbation of Skin Models by Transdermal Penetration Enhancers Investigated by 31P NMR and Fluorescence SpectroscopyBurch, Charmita Patricia 02 May 2007 (has links)
The molecular basis of the potent transdermal enhancement activity of a series of iminosulfuranes, structure provided where X = H, Cl, Br, and I, is being investigated skin models. It has been shown (J. Lipid Res. 46(2005), 2192-2201.) that correlations exist between the activity of the aforementioned transdermal penetration enhancers (TPE) and the extent to which these agents bind to DMPC vesicles and perturb the gel to liquid crystal phase transition measured by calorimetry. The degree to which the perturbation of these compounds extends into the bilayer interior in contrast to surface activity is unclear. To gain insight into this issue, the 31P NMR resonance from DMPC and DMPC-cholesterol unilamellar vesicles have been split by the slowly penetrating paramagnetic metal ion Pr+3. The extent to which this perturbation is attenuated by transdermal penetration enhancers has been investigated as a function of Pr+3 exposure time and iminosulfurane concentration. The effect of these iminosulfuranes on bilayer integrity is also being explored by monitoring the induced release of carboxyfluorescein from DMPC and DMPC- cholesterol unilamellar vesicles.
|
9 |
Interactions Of Cholesterol Reducing Agent Simvastatin With Phospholipid Model MembranesKocak, Mustafa 01 January 2007 (has links) (PDF)
Interactions of simvastatin with zwitterionic dipalmitoyl phosphotidylcholine (DPPC) multilamellar liposomes were investigated as a function of temperature and simvastatin concentration. And acyl chain length effect on the simvastatin-model membrane interactions was monitored with DPPC and dimyristoyl phosphotidylcholine (DMPC) lipids. All studies were carried out by two non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC).
The results showed that as simvastatin concentration increased, the main phase transition temperature decreased, the main phase transition curve broadened, and the characteristic pretransition was disappeared for both DMPC and DPPC model membranes. All concentrations of simvastatin disordered and decreased the fluidity of phospholipid membranes.
Analysis of C=O stretching band showed that simvastatin either strengthen the existing hydrogen bonds of the glycerol skeleton closer to the head groups or caused the formation of new hydrogen bonds.
A dehydration effect caused by simvastatin around the PO2- functional groups in the polar part of the lipids was monitored. This dehydration effect in the gel phase was more profound than in the liquid crystalline phase for 1, 6, and 12 mol% of simvastatin concentrations.
DSC peaks broadened and shifted to lower temperature values by increasing the simvastatin concentration. For both lipids, simvastatin-induced lateral phase separation was observed in the DSC thermograms.
Any change caused by the acyl chain length difference of DMPC and DPPC lipids was not observed on the simvastatin-membrane interactions. Also, for both of the lipids similar trends were observed in the FTIR and DSC results. More profound effects of simvastatin on the less stable DMPC membranes were observed.
|
10 |
Progress towards directly measuring the membrane dipole field in lipid bicelles using vibrational Stark effect spectroscopyHu, Wenhui, M.A. 16 February 2012 (has links)
The electrostatic field created by the inward pointing dipole moments of an oriented membrane leaflet has never been measured directly, but is thought to have an important influence on membrane function. Here we present the first direct measurement of the membrane dipole field in lipid bicelles using vibrational Stark effect spectroscopy which is based on the sensitivity of a nitrile oscillator’s vibrational frequency to its local electrostatic environment. The nitrile probe was introduced as the artificial amino acid p-cyanophenylalanine (CN-Phe) in four different locations of a α-helical peptide composed of alternating alanine and leucine residues. This peptide was intercalated into bicelles composed of mixtures of the long chain lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and the short chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) formed in two different sizes, 5 nm and 15 nm in radius. Formation of the bicelle above the phase transition temperature of the lipid mixture was confirmed by ³¹P NMR, and the structure of the [alpha]-helix within the bicelle was confirmed by circular dichroic spectroscopy. The absorption energy of the nitrile probe at 4 positions along the helical axis was measured by Fourier transform infrared spectroscopy, from which we estimate the magnitude of the membrane dipole electrostatic field to be -6 MV/cm. Then we successfully manipulated the dipole field in q = 0.5 DMPC/DHPC bicelles by incorporating the small molecule phloretin into the membrane and measured the corresponding ratiometric fluorescence signal of the co-intercalated voltage gated dye di-8-ANEPPS. We measured 0.7 ± 0.2 cm⁻¹ blue shift in absorption energy of the nitrile probe due to the decrease in dipole field caused by phloretin, corresponding to a dipole field of -4.2 MV/cm. This change was essentially identical to what has been estimated through ratiometric fluorescence methods, indicating that VSE spectroscopy will be useful tool for measurement of the biological effects of electrostatic fields in lipid membranes. / text
|
Page generated in 0.0219 seconds