411 |
Caractérisation des fonctions génomiques de variants du récepteur des androgènes dans le cancer de la prostate / Transcriptional activities of androgen receptor variants in prostate cancerOuld Madi-Berthelemy, Pauline 25 September 2018 (has links)
Le récepteur des androgènes (RA) est la principale cible thérapeutique du cancer de la prostate (CaP) métastatique. Bien que cette thérapie soit initialement efficace, les effets sont transitoires. De nombreux mécanismes peuvent expliquer la progression du CaP vers un stade de résistance à la castration, telles les modifications du RA. Des données récentes ont montré que les variants constitutifs RA-Q641X et RA-V7, caractérisés par la perte du domaine de liaison au ligand, étaient associés à l’expression de marqueurs mésenchymateux. L’étude de la régulation de la N-cadhérine a mis en évidence que si le RA sauvage et les variants constitutifs se liaient tous deux aux éléments de réponse du gène codant, seuls les derniers étaient associés à une augmentation de l’acétylation de l’histone H4, marque positive de la transcription. Le RNA-seq a révélé que leur expression était aussi corrélée à la régulation de sets de gènes spécifiques incluant des facteurs de transcription dont certains ont déjà été caractérisés en cancérologie.En ce qui concerne le RA-T576A, porteur d’une mutation faux-sens, les données ont révélé une séquence consensus de liaison à l’ADN moins conservée pour le RA sauvage que pour ce mutant et l’importance du 11ème nucléotide des éléments de réponse. De plus, cette mutation a semblé impacter le transcriptome du RA. Ce travail met en évidence le comportement distinct des variants du RA et aide à mieux comprendre leurs modes d’action en décrivant leurs activités transcriptionnelles. / The androgen receptor (AR) is the main therapeutic target in metastatic prostate cancer (PCa). Although this therapy is initially effective, the effects are transient. Many mechanisms can explain PCa progression toward castration resistance including abnormalities in the AR. Recent data have shown that constitutive AR (e.g AR-Q641X and AR-V7), which have lost the ligand binding domain, were associated with the induction of mesenchymal marker expression. The study of N-cadherin regulation highlighted that while both constitutive AR and wild type AR bound to response elements located in the encoding gene, only the AR variants were associated with an increase of H4 acetylation, a positive transcription mark. RNA-seq revealed that their expression was also correlated to specific sets of genes regulation, including transcription factors and genes involved in migration, AR regulation, and therapeutic resistance.Concerning AR-T576A, which hold a missense mutation, data revealed a less conserved consensus sequence for the wild type AR than for this mutant and highlighted the importance of the 11th nucleotide of the response element for AR recruitment to DNA. Plus, this mutation seemed to impair AR transcriptome. This work highlights the distinct AR variants’ behavior and helps to understand their mode of action by depicting their transcriptional landscapes.
|
412 |
NFκB independent pathway activation of rheumatoid arthritis FLS by macrophage migration inhibitory factor (MIF)Lacey, Derek January 2003 (has links)
Abstract not available
|
413 |
The p53 family interacting pathways in carcinogenesis and cellular response to DNA damageJohnson, Jodi L. January 2007 (has links) (PDF)
Ph.D. / Molecular and Medical Genetics / The objective of this study is to examine, in light of the expression of multiple p53 family member isoforms, the specific role of p73 in malignant conversion, cellular response to DNA damage, and direct or indirect cooperation with other p53 family members in a clonal model of epidermal carcinogenesis. We first focused on the role of p73 in malignant conversion. Whether sporadic or siRNA induced, loss of p73 in initiated p53+/+ keratinocytes lead to conversion to squamous cell carcinoma (SCC) in vivo which was reversible upon reconstitution of TAp73α but not ΔNp73α. Second, we investigated the cellular response to ionizing radiation (IR) in the presence and absence of p73, showing that loss of p73 at malignant conversion was associated with resistance to IR in vitro. The loss of radiation sensitivity and malignant conversion was characterized by reduced steady state DNA binding levels of transcriptionally active p63 isoforms to the p21 promoter, failure to induce specific p53 family transcriptional targets, and failure to arrest in G1. Reconstitution of TAp73α, but not ΔNp73α, increased steady state DNA binding capabilities of TAp63β, TAp63γ, and ΔNp63γ, and steady state levels of p53 family target mRNA, but did not restore cellular sensitivity to IR. We thus uncovered a functional cooperation between TA isoforms of p73 and p63 and showed that p73-mediated DNA damage response was uncoupled from its tumor suppressive role. We observed preferential DNA binding of the inhibitory ΔNp63α isoform both in vitro and invivo in SCC suggesting that in the absence of TAp73α a balance is tipped toward DNA binding of the inhibitory isoforms. Third, we studied the role of the p53 family inkeratinocyte response to UVB. Tumorigenic cells lacking p73 that were resistant to IR remained sensitive to UVB, accompanied by DNA binding of the TAp63γ isoform, suggesting that keratinocyte response to UVB is not dependent upon p73 and suggesting a hierarchy of p53 family member responses to DNA damage. Finally, we examined TAp73α interaction with the p53 family inhibitor Mdm2. Mdm2 was in complex with DNA-bound p53 family members in malignant cells, but reconstitution of cells withTAp73α correlated with removal of Mdm2 from the complex, making them more like primary keratinocytes or initiated cells. Like the initiated cells, cells expressing TAp73α were refractory to treatment with the Mdm2-p53 inhibitor Nutlin-3 while cells lacking p73 expression or expressing ΔNp73α were sensitive. Thus, we suggest that p73 may be acting as a molecular shield to keep p53 family member inhibitors, such as ΔNp63α andMdm2, at bay. Further understanding of p53 family interplay in tumor development and DNA damage response could lead to new therapies or optimization of current therapeutic strategies in solid tumors of epithelium, particularly where deregulation or loss of p63 and p73 expression is associated with increased tumor invasiveness, treatment resistance, and poor patient prognosis.
|
414 |
Method development and applications of Pyrosequencing technologyGharizadeh, Baback January 2003 (has links)
The ability to determine nucleic acid sequences is one ofthe most important platforms for the detailed study ofbiological systems. Pyrosequencing technology is a relativelynovel DNA sequencing technique with multifaceted uniquecharacteristics, adjustable to different strategies, formatsand instrumentations. The aims of this thesis were to improvethe chemistry of the Pyrosequencing technique for increasedread-length, enhance the general sequence quality and improvethe sequencing performance for challenging templates. Improvedchemistry would enable Pyrosequencing technique to be used fornumerous applications with inherent advantages in accuracy,flexibility and parallel processing. Pyrosequencing technology, at its advent, was restricted tosequencing short stretches of DNA. The major limiting factorwas presence of an isomer of dATPaS, a substitute for thenatural dATP, which inhibited enzyme activity in thePyrosequencing chemistry. By removing this non-functionalnucleotide, we were able to achieve DNA read-lengths of up toone hundred bases, which has been a substantial accomplishmentfor performance of different applications. Furthermore, the useof a new polymerase, called Sequenase, has enabled sequencingof homopolymeric T-regions, which are challenging for thetraditional Klenow polymerase. Sequenase has markedly madepossible sequencing of such templates with synchronizedextension. The improved read-length and chemistry has enabledadditional applications, which were not possible previously.DNA sequencing is the gold standard method for microbial andvial typing. We have utilized Pyrosequencing technology foraccurate typing ofhuman papillomaviruses, and bacterial andfungal identification with promising results. Furthermore, DNA sequencing technologies are not capable oftyping of a sample harboring a multitude of species/types orunspecific amplification products. We have addressed theproblem of multiple infections/variants present in a clinicalsample by a new versatile method. The multiple sequencingprimer method is suited for detection and typing of samplesharboring different clinically important types/species(multiple infections) and unspecific amplifications, whicheliminates the need for nested PCR, stringent PCR conditionsand cloning. Furthermore, the method has proved to be usefulfor samples containing subdominant types/species, and sampleswith low PCR yield, which avoids reperforming unsuccessfulPCRs. We also introduce the sequence pattern recognition whenthere is a plurality of genotypes in the sample, whichfacilitates typing of more than one target DNA in the sample.Moreover, target specific sequencing primers could be easilytailored and adapted according to the desired applications orclinical settings based on regional prevalence ofmicroorganisms and viruses. Pyrosequencing technology has also been used forclone-checking by using preprogrammed nucleotide additionorder, EST sequencing and SNP analysis, yielding accurate andreliable results. <b>Keywords:</b>apyrase, bacterial identification, dATPaS, ESTsequencing, fungal identification, human papillomavirus (HPV),microbial and viral typing, multiple sequencing primer method,Pyrosequencing technology, Sequenase, single-strandedDNA-binding protein (SSB), SNP analysis
|
415 |
Mycobacterium Leprae RecA Intein : A LAGLIDADG Homing Endonuclease, Displays A Unique Mode Of DNA Binding And Catalysis Compared To A Canonical LAGLIDADG Homing EnzymeSingh, Pawan 12 1900 (has links)
Mobile genetic elements are DNA sequences that move around to different positions within one genome or between different genomes. Mobile DNA elements were initially considered as selfish DNA sequences parasitizing the organism’s genome. However, this view has changed with the discovery of several mobile genetic elements which play important evolutionary and functional roles. Such understanding has led to a new connotation for these genetic elements such as drivers or natural molecular tools of genome evolution. Extensive research over the past several years has also led to the identification of several new mobile genetic elements including transposons, segregation distorters, heritable organisms, introns and inteins.
Homing endonucleases (HEnases) are a group of rare cutting site-specific doublestranded DNA endonucleases encoded by open reading frames within introns, inteins or free standing genes in all the three forms of life including viruses. These enzymes confer mobility to themselves and their encoding sequences by a gene conversion event termed “homing”. During the homing process, the endonuclease inflicts a double-strand break at or near the homing site of the intein-/intron-less allele, which is subsequently repaired by the host DNA repair machinery resulting in the inheritance of intein/intron. The first homing endonuclease identified was the Saccharomyces cerevisiae mitochondrial genetic marker ‘ω’, which affects the polarity of recombination. This genetic marker, which was later shown to be a mobile group I intron, was present in the mitochondrial 21S rRNA gene and encodes a homing endonuclease. HEnases are distinguished for being able to recognise long DNA sequences (14-40 bp), and display disparate cleavage mechanisms. Unlike restriction endonucleases, these enzymes tolerate sequence polymorphism in their recognition region which provides a mechanism for increasing their genetic diversity. Substantial efforts are underway to explore the possibility of utilizing HEnases as tools for genome mapping, cloning of megabase DNA fragments and gene targeting. HEnases are divided into five sub-families on the basis of their conserved sequence and structural motifs: LAGLIDADG, GIY-YIG, H-N-H, His-Cys box and PD-(D/E)-XK families. Among these, LAGLIDADG family is the largest, most prevalent and well-studied class of HEnases. Homing enzymes that contain a single copy of LAGLIDADG motif per polypeptide chain, such as ICreI, I-MsoI and I-CeuI function as homodimers and recognize and cleave palindromic and pseudo-palindromic DNA sequences. On the other hand, HEnases that harbour two copies of LAGLIDADG motifs including I-AniI, PI-SceI and I-SceI act as monomers and recognize and cleave their DNA target sites with considerable asymmetry.
Eubacterial RecA proteins are important for a number of cellular processes such as homologous recombination, DNA repair, restoration of stalled replication forks and SOS response. RecA protein and the process of homologous recombination, which is the main mechanism of genetic exchange, are evolutionarily conserved among a range of organisms. However, few mycobacterial species such as Mycobacterium tuberculosis and Mycobacterium leprae were found to be an exception as they harboured in-frame insertion of an intein-coding sequence in their recA genes. In these organisms, RecA is synthesized as a large precursor, which undergoes protein splicing resulting in the formation of an intein and functionally active RecA protein. The milieu in which RecA precursor undergoes splicing differs substantially between M. tuberculosis and M. leprae. M. leprae RecA precursor (79 kDa) undergoes splicing only in mycobacterial species, whereas M. tuberculosis RecA precursor (85 kDa) is spliced efficiently in Escherichia coli as well. Intriguingly, M. tuberculosis and M. leprae RecA inteins differ greatly in their size, primary sequence and location within the recA gene, thereby suggesting two independent origins during evolution. The occurrence of inteins in the obligate mycobacterial pathogens M. tuberculosis, M. leprae and M. microti, initially suggested that RecA inteins might play a role in pathogenesis or virulence, however this was found to be not the case due to the subsequent identification of these intervening sequences in several non pathogenic mycobacterial strains. Sequence comparison of RecA inteins suggested that they belong to the LAGLIDADG class of homing endonucleases. Accordingly, we have shown earlier that M. tuberculosis RecA intein (PI-MtuI), is a novel LAGLIDADG homing endonuclease, which displays dual target specificity in the presence of alternative cofactors in an ATP-dependent manner.
The genome of M. leprae, a gram positive bacillus reveals that in contrast to the
genomes of other mycobacterial species, it has undergone extensive deletions and decay and thereby represents an extreme case of reductive evolution. In such a scenario of massive gene decay and function loss in the leprosy bacillus, and dissimilarities in size and primary structures among mycobacterial RecA inteins, it was of interest to examine whether M. leprae recA intervening sequence can encode a catalytically active homing endonuclease. To this end, the intervening sequence corresponding to M. leprae recA intein was PCR amplified, cloned, overexpressed and purified to homogeneity using IMPACT protocol. The identity of the purified RecA intein was ascertained by sequencing 9 amino acid residues at the N-terminal end and Western blot analysis using anti-PI-MleI antibodies. Purified enzyme was found to be devoid of any contaminating exonuclease. Protein crosslinking experiments using glutaraldehyde suggested that PI-MleI exists in solution as a monomer, consistent with double-motif LAGLIDADG enzymes.
To test whether the purified PI-MleI can bind to the DNA and display any DNA-binding specificity, we carried out electrophoretic mobility shift assays with both single-stranded and double-stranded cognate DNA. The enzyme displayed robust binding to cognate doublestranded DNA, compared to the cognate single-stranded DNA. DNA binding was further found to be sequence independent though the presence of the cognate sequence was required for maximal binding. The stability and specificity of PI-MleI-cognate DNA complexes were further examined by salt titration and competition experiments, which indicated high stability and specificity.
After establishing the stable binding of recombinant PI-MleI to the cognate duplex
DNA, we next investigated its endonuclease activity on the cognate plasmid pMLR containing the intein-less recA allele, in the absence or presence of divalent cations. The cleavage was monitored by the conversion of supercoiled pMLR to nicked circular as well as linear duplex DNA. PI-MleI exhibited both single-stranded nicking and double-stranded DNA cleavage activity. PI- MleI exhibits endonuclease activity both in the presence of Mg2+ or Mn2+ through a two step reaction. PI-MleI mediated cleavage though was found to be divalent cation dependent however was nucleotide cofactor independent, unlike PI-MtuI, which cleaves the cognate DNA substrate in the presence of ATP. PI-MleI endonuclease activity was assayed under different conditions and found to display a broad divalent cation, pH and temperature dependence. The kinetic experiments revealed slow turnover rate of PI-MleI suggesting its weak endonuclease activity in contrast to robust cleavage activity displayed by several other known LAGLIDADG homing endonucleases.
An intriguing observation emerged from the cleavage site mapping of PI-MleI at singlenucleotide resolution. PI-MleI displayed a staggered double- strand break in the homing site by nicking in the left flanking sequence 44 to 47 bp and in the right flanking sequence 16 to 25 bp, away from the intein insertion site. Similar cleavage patterns have been earlier observed for few GIY-YIG homing endonucleases. To gain further mechanistic insights into the PI-MleI mediated catalysis, we examined the binding of PI-MleI to the cognate DNA by DNase I and (OP)2 Cu footprinting experiments. Both the footprinting approaches revealed interaction of PI-MleI with a region upstream and downstream of its own insertion site, conferring protection to 16 nucleotide residues on the upper and 12 nucleotide residues on the lower strand, respectively. The asymmetric footprints have been earlier observed for some members of LAGLIDADG-type homing endonucleases wherein protection on the complementary strands was found to be out of register by 2 to 3 nucleotides, respectively. In case of PI-MleI, however the footprint formed on the complementary strands of the homing site is non-overlapping, indicating the asymmetric mode of interaction of the enzyme. Surprisingly, PI-MleI footprint was not evident at the cleavage sites and this could be due to the unstable binding of the intein at these regions. To decipher the interaction of PI-MleI at the cleavage sites and to ascertain if these interactions have any functional implications in terms of alterations in base-pairing positioning or strand separation to mediate DNA catalysis, we probed the structure of PI-MleI-DNA complexes with KMnO4. KMnO4 treatment of PI-MleI-cognate DNA complexes revealed the presence of hypersensitive T residues on both the strands at the cleavage sites, but showed no such reactive T residues within the PI-MleI-binding regions. Also, hyper-sensitive T residues were not seen at or near the intein-insertion site or in the region between binding and cleavage sites suggesting that PI-MleI upon binding its cognate DNA induces distortions selectively at the cleavage region. To validate these findings and to test whether such alterations occurred on all substrate DNA molecules or on a small sub-population of target molecules, we used a more sensitive 2-aminopurine fluorescence approach. To this end, six cognate duplex DNA molecules each containing 2-aminopurine (2-AP) at different positions such as at the insertion site, in the DNAbinding region, at or near to the cleavage sites were synthesized to monitor helical distortions in the target DNA. The 2-AP containing cognate DNA duplexes were incubated with increasing concentrations of PI-MleI in the assay buffer and monitored the changes in 2-AP fluorescence intensity in the spectral region from 330 to 450 nm. Out of the 2-AP placed at several positions within the cognate substrate, only the 2-aminopurines at the cleavage site showed enhanced fluorescence with PI-MleI addition, consistent with the hyper-sensitivity of T residues during KMnO4 probing. The findings suggest that DNA distortion might assist PI-MleI in widening the minor groove at the cleavage site and make the scissile phosphates accessible to the enzyme active site similar to what has been seen with other LAGLIDADG homing enzymes. These
observations suggest that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage sites and generates two staggered double-strand breaks. Together, these finding indicate the modular structure of PI-MleI having separate domains for DNA target recognition and cleavage and a bipartite structure of its homing site.
After demonstrating the endonuclease activity of PI-MleI, we next examined the active site residues of PI-MleI involved in double-stranded DNA cleavage, which would further provide insights into its catalytic mechanism. Previously, sequence alignment analyses of LAGLIDADG enzymes carried out using different alignment programs identified the presence of 115VLGSLMGDGP123 sequence as DOD motif I (Block C) and 185LQRAVYLGDG194 or 210VLAIWYMDDG219C sequences as catalytic DOD motif II (Block E) in M. leprae RecA intein (PI-MleI). The bioinformatics analyses though on one hand identified the catalytic motifs in PI-MleI, on the other hand led to conflicting data in regard to the identity and the specific position of the catalytic DOD motif II within the PI-MleI polypeptide. We therefore, performed site-directed mutagenesis of key residues in these catalytic motifs and examined their effect on PI-MleI mediated catalysis.
A wealth of mutagenesis and structural data, which exists concerning HEnases, suggests that catalytic centers carry essential aspartate residues, one in each of the LAGLIDADG motifs Accordingly, we chose to mutate conserved aspartates that have been previously implicated in catalysis. By site-directed mutagenesis, we constructed five mutant proteins, in which Asp122 was mutated to alanine, cysteine and threonine; whereas Asp193 and Asp218 were mutated to alanine. The identity of each mutant was ascertained by determining the complete nucleotide sequence of the mutant gene. Mutant proteins were further purified to >95% homogeneity using the purification strategy developed for wild type PI-MleI and were found to be devoid of any contaminating exonuclease.
To study the effect of mutations in PI-MleI active site residues on its DNA-binding affinity, we examined the binding characteristics of the wild type PI-MleI and its aspartate variants with the intein-less recA substrate and the stability of protein-DNA complexes. All the mutants displayed similar binding affinity to the cognate DNA as that of the wild type PI-MleI, as judged by the comparison of their binding constants (Kd) which were found to be of the same order. Comparison of salt titration isotherms of wild type PI-MleI and its aspartate variants further revealed the similar salt titration midpoint for most of the mutants as that of wild type enzyme suggesting similar protein-DNA complexes stability. Although these results indicate the occurrence of stable complexes between PI-MleI variants and target DNA, to further define the DNA-binding properties of each mutant protein, wild-type PI-MleI and its variants were assayed by DNase I footprinting. All the mutants (D122A, D122C, D122T, D193A and D218A) showed an asymmetric footprint and protection of ~16 nucleotide residues on the upper and 12 nucleotide residues on the lower strand, respectively, near the intein-insertion site similar to the wild type PI-MleI. Together, these observations suggest that the aspartate substitutions in the catalytic motifs do not alter DNA recognition specificity of PI-MleI or its variants, and may not play a direct role in protein-DNA interactions, again implicating the existence of a modular structure of PI-MleI with distinct DNA-binding and catalytic domains.
Wild-type PI-MleI although binds near the intein insertion site, but however was found to induce helical distortions only at the cleavage sites. To explore, if aspartate substitutions have any effect on the structural modifications in target DNA sequence, we carried out 2-aminopurine fluorescence with wild type PI-MleI and its variants. In agreement with the wild type enzyme, all the mutants showed increase in fluorescence with target DNA containing 2-AP only at the cleavage sites, but not at the binding sites. However, quantitative measurements of fluorescence change suggested that D122A and D193A mutants show nearly two-fold decrease in the magnitudes of spectral change at the cleavage site compared to wild type and other variants suggesting their involvement in the helical distortion process.
To study the effect of Asp substitutions on the catalytic activity of PI-MleI, we
performed cleavage assays using cognate plasmid pMLR DNA, with increasing concentrations of wild-type PI-MleI, or its variants and measured the double-stranded cleavage activity. Whereas, D122A and D193A mutants were completely inactive in double-stranded DNA cleavage under the conditions of the cleavage assay, D218A showed DNA cleavage activity comparable to that of the wild type PI-MleI. Similarly, D122T showed decrease in doublestranded DNA cleavage activity. Interestingly, D122C variant showed ~2-fold enhanced DNA cleavage, compared to the wild-type enzyme.Together, these findings provide compelling evidence to conclude that 115VLGSLMGDGP123 and 185LQRAVYLGDG194 motifs (Blocks C and E, respectively), but not 210VLAIWYMDDG219 motif (Block E), and that residues Asp122 and Asp193 play a direct role with respect to the catalytic mechanism of PI-MleI.
In summary, these results suggest that the structural and mechanistic aspects of PI-MleI catalysis are distinct from other well-characterized LAGLIDADG-type homing endonucleases and thus provide further insights into understanding the function and evolution of LAGLIDADG homing enzymes.
|
416 |
Aspects Of The Chemistry Of Iron Complexes Showing DNA Photo-cleavage ActivityRoy, Mithun 07 1900 (has links)
The present thesis deals with different aspects of the chemistry of iron complexes, their interaction with DNA and photo-induced cleavage of double-stranded DNA.
Chapter I presents a general introduction on metal-based drugs in cancer therapy and the evolution of the transition metal complexes capable of targeting DNA leading to DNA strand scission, emphasizing particularly the photo-induced DNA cleavage activities for their potential utility in PDT. The mechanistic pathways associated with the DNA cleavage are discussed citing selected examples of compounds that are known to be efficient DNA photo-cleavers on irradiation with light of different wavelengths. Objective of the present investigation is dealt in this chapter.
Chapter II deals with the synthesis, crystal structure, DNA binding and oxidative DNA cleavage activity of ternary iron(II) complexes of phenanthroline bases to explore the chemistry of iron(II) complexes towards the metal-assisted photo-induced DNA cleavage activity.
Chapter III presents the synthesis and characterization of a cationic imidazo[1,5-a]pyridine derivative to explore the role of imidazopyridine moiety in the photo-induced DNA cleavage activity of the compound. Its cytotoxic effect to the HeLa cancer cell has also been studied using UV-A light of 365 nm.
Chapter IV presents the synthesis and characterization of dipyridoquinoxaline (dpq) complexes of bivalent 3d-metal ions such as d6-iron(II), d7-cobalt(II), d8-nickel(II), d9-copper(II) and d10-zinc(II) to explore any specific role that is played by the transition-metal ions in exhibiting visible light-induced DNA cleavage activity.
Chapter V deals with the synthesis, characterization of oxo-bridged diiron(III) complexes of phenanthrolne bases having a structural motif found in many iron-containing metalloproteins with a diiron core in the active site. DNA binding and photo-induced DNA cleavage activity of the complexes is studied.
Finally, Chapter VI deals with the synthesis and characterization of oxo-bridged diiron(III) complexes having L-histidine (L-his) and N,N-donor heterocyclic bases. This chapter describes the double-strand DNA cleavage activity of [{Fe(L-his)(dpq)}2(μ-O)](ClO4)2. Rationalization of the DNA double strand break (dsb) has been made using molecular docking calculations. This chapter also deals with the site-specific protein (bovine serum albumin, BSA) cleavage activity of the complexes on UV-A light irradiation.
The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any omission that might have happened due to oversight or mistake is regretted.
|
417 |
Regulation of TGF-β Signaling by Post-Translational ModificationsLönn, Peter January 2010 (has links)
Transforming growth factor-β (TGF-β) signaling is initiated when the ligand binds to type II and type I serine/threonine kinase receptors at the cell surface. Activated TGF-β type I receptors phosphorylate R-Smads which relocate, together with co-Smads, to the cell nucleus and regulate transcription. Enhancement or repression of Smad-specific gene targets leads to intracellular protein compositions which organize functional complexes and thus govern cellular processes such as proliferation, migration and differentiation. TGF-β/Smad signaling relays are regulated by various post-translational modifications. From receptors to gene promoters, intricate interplays between phosphorylation, acetylation, ubiquitination and numerous other modifications, control Smad signaling initiation and duration. However, many steps in the cascade, including receptor internalization, Smad nuclear shuttling and transcriptional termination, still remain elusive. The open gaps in our understanding of these mechanisms most likely involve additional post-translational regulations. Thus, the aim of the present investigation was to identify novel modulators of TGF-β/Smad signaling. In the first part of this thesis, we show the importance of ADP-ribosylation in Smad-mediated transcription. We identified poly(ADP-ribose) polymerase 1 (PARP-1) as a Smad interacting protein. Our work revealed that PARP-1 forms direct interactions with Smad3/4, and PARylates residues in their MH1 domains. This modification restricts Smads from binding to DNA and attenuates Smad-activated transcription. PARylation is reversed by the glycohydrolase PARG. We provide evidence that PARG can de-ADP-ribosylate Smads, which enhances Smad-promoted gene regulation. In the second part, we examine a Smad-dependent gene target of TGF-β signaling, salt inducible kinase 1 (SIK). After induction, SIK cooperates with Smad7 and Smurf2 to downregulate the TGF-β type I receptor. The mechanism relies on both the kinase and UBA domain of SIK as well as the E3-ligase activity of Smurf2. In summary, we have unveiled two enzyme-dependent TGF-β/Smad modulatory mechanisms; SIK promoted receptor turnover and PARP-1/PARG-regulated Smad signaling.
|
418 |
MeCP2 Deficiency is Sufficient to Disrupt Daily Rhythmic Behaviours in MiceWither, Robert 27 November 2012 (has links)
Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) cause the neurodevelopmental disorder Rett syndrome, a common genetic cause of mental retardation in females. Although alterations in performance of MeCP2-deficient mice in specific behavioural tasks have been documented, it remains unclear if, and to what degree, MeCP2 dysfunction affects patterns of periodic behavioural and electroencephalographic activity. To address this, we monitored daily rhythmic patterns of core body temperature, gross motor activity, and cortical delta power from MeCP2-deficient mice and correlated it against regional MeCP2 expression levels. Our results show that normal daily rhythmic behavioural patterning of delta wave activity, body temperature and mobility are disrupted in these mice. Moreover, MeCP2-deficient mice displayed lower average core body temperature and significantly greater body temperature fluctuation than wild-type female mice. Finally, we also found that epileptiform discharge activity in MeCP2-deficient mice is more predominant during times of behavioural activity compared to inactivity.
|
419 |
MeCP2 Deficiency is Sufficient to Disrupt Daily Rhythmic Behaviours in MiceWither, Robert 27 November 2012 (has links)
Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) cause the neurodevelopmental disorder Rett syndrome, a common genetic cause of mental retardation in females. Although alterations in performance of MeCP2-deficient mice in specific behavioural tasks have been documented, it remains unclear if, and to what degree, MeCP2 dysfunction affects patterns of periodic behavioural and electroencephalographic activity. To address this, we monitored daily rhythmic patterns of core body temperature, gross motor activity, and cortical delta power from MeCP2-deficient mice and correlated it against regional MeCP2 expression levels. Our results show that normal daily rhythmic behavioural patterning of delta wave activity, body temperature and mobility are disrupted in these mice. Moreover, MeCP2-deficient mice displayed lower average core body temperature and significantly greater body temperature fluctuation than wild-type female mice. Finally, we also found that epileptiform discharge activity in MeCP2-deficient mice is more predominant during times of behavioural activity compared to inactivity.
|
420 |
In vitro and In vivo High-throughput Analysis of Protein:DNA InteractionsShahravan, Seyed Hesam 06 December 2012 (has links)
In this thesis, emphasis has been placed on development of new approaches for high-throughput analysis of protein:DNA interactions in vitro and in vivo. In vitro strategies for detection of protein:DNA interaction require isolation of active and soluble protein. However, current methodologies for purification of proteins often fail to provide high yield of pure and tag-free protein mainly because enzymatic cleavage reactions for tag removal do not exhibit stringent sequence specificity. Solving this problem is an important step towards high-throughput in vitro analysis of protein:DNA interactions. As a result, parts of this thesis are devoted to developing new approaches to enhance the specificity of a proteolysis reaction. The first approach was through manipulation of experimental conditions to maximize the yield of the desired protein products from enterokinase proteolysis reactions of two His-tagged proteins. Because it was suspected that accessibility of the EK site was impeded, that is, a structural problem due to multimerization of proteins, focus was based on use of denaturants as a way to open the structure, thereby essentially increasing the stoichiometry of the canonical recognition site over noncanonical, adventitious sites. Promoting accessibility of the canonical EK target site can increase proteolytic specificity and cleavage yield, and general strategies promoting a more open structure should be useful for preparation of proteins requiring endoprotease treatment. One such strategy for efficient EK proteolysis is proposed: by heterodimerizing with a separate leucine zipper, the bZIP basic region and amino-terminus can become more open and potentially more accessible to enterokinase.
In vivo strategies have the advantage over their in vitro counterparts of providing a native-like environment for assessing protein:DNA interactions, yet the most frequently used techniques often suffer from high false-positive and false-negative rates. In this thesis, a new bioprobe system for high-throughput detection of protein:DNA interactions in vivo is presented. This system offers higher levels of accuracy and sensitivity as well as accessibility and ease of manipulation in comparison with existing technologies.
|
Page generated in 0.0664 seconds